電池保護板的自身參數,比如自耗電分為工作自耗電和靜態(睡眠)自耗電,保護板自耗電的電流一般是ua級別。工作自耗電電流較大,主要為保護芯片、mos驅動等消耗。保護板的自耗電太大會過多消耗電池電量,如果長時間擱置的電池,保護板自耗電可能導致電池虧電。自耗電和內阻等,他們不起保護作用,但是對電池的性能是有影響的。保護板的主回路內阻也是一個很重要的參數,保護板的主回路內阻主要來源于pcb板上鋪設阻值,mos的阻值(主要)和分流電阻的阻值。在保護板進行充放電時,特別是mos部分,會產生大量的熱,因此一般保護板的mos上都需要貼一大塊的鋁片用于導熱和散熱。除了這些基本功能以外,為了使用不同的應用場景個需求,保護板還有各種各樣的附加功能(如均衡),特別是帶軟件的保護板,功能更是異常豐富,比如藍牙、wifi、GPS、串口、CAN等應有盡有,再高階一點,就成了電池管理系統了(BMS)。BMS是連接車載動力電池和電動汽車的重要紐帶。動力電池BMS保護芯片
鋰電池相比傳統的鉛酸電池,具有更長的使用壽命、更輕的質量、更環保以及更大的能量密度等優勢。在新國標的推動下,鋰電池在兩輪電動車中的使用比例將會增加。然而,由于鋰電池具有高能量密度和內部化學物質活性強的特點,在過充、過放等非正常使用情況下,電池可能會損壞,甚至在極端情況下引發起火或起爆。因此,鋰電池需要配備一套監控系統,實時監測電壓、電流等參數,并在超出預設閾值時立即切斷電池主回路。BMS電池智能管理解決方案,通過整合智能終端、電池保護板和電池管理平臺,構建了新一代智能電池管理系統。電動三輪車BMS電池管理系統軟件開發如果對基本功能的要求較高,且成本預算較為有限,BMS硬件保護板是一個不錯的選擇。
鋰電池BMS保護板的過充保護:場效應管Q1、Q2可等效為兩只開關,當Q1或Q2的G極電壓大于1V時,開關管導通。導通開關管的D、S間內阻很小(數十毫歐姆),相當于開關閉合;當G極電壓小于0.7V時,開關管截止,截止的開關管的D、S極間的內阻很大(幾兆歐姆),相當于開關斷開。電池包充電時,當鋰動力電池包通過充電器正常充電時,隨著充電時間的增加,電芯兩端的電壓將逐漸升高,當電芯電壓升高到4.4V(通常稱為過充保護電壓)時,控制IC將判斷電芯已處于過充電狀態,控制IC將使Q2截止,此時電芯的B一極與保護電路的P-端之間處于斷開狀態并保持,即電芯的充電回路被切斷,停止充電。
造成鋰電池活性物質不可逆消耗的主要因素有:1)正極材料的溶解:正極材料的溶解造成正極活性物質減少,溶解的正極材料游離到負極時會造成負極界面膜的不穩定,被破壞的界面膜再形成時會消耗鋰離子,造成鋰離子的減少。2)正極材料的相變化:鋰離子在電極間正常脫嵌時,總會伴隨著宿主結構摩爾體積的變化,結構不可逆轉變,影響顆粒與電極間的電化學接觸,造成容量衰減。3)電解液的分解:在鋰離子電池充電過程中,電解液對含碳電極具有不穩定性,會發生還原反應。電解液還原消耗了電解質及其溶劑,對電池容量及循環壽命產生不良影響。4)過充電:電池在過充電時,不僅會造成負極形成鋰沉淀、電解液氧化和正極氧的損失,消耗活性物質導致容量不可逆損失,還會有安全隱患。5)界面膜的形成:界面膜(SEI膜)的形成會消耗鋰離子,一般發生在起初的幾次充放電時。6)集流體的腐燭:鋰離子電池中的集流體材料常用鋁和銅,兩者的腐蝕會在表面形成膜,電池內阻增大,放電效率下降,從而造成電池壽命衰減。BMS保護板分為分口和同口保護板。
BMS電池保護板也可以按照電芯材料來區分。不同的電芯材料,放電截止電壓和充電截止電壓是不一樣的。因此,所使用的保護板也是不一樣的,最常見的就是三元保護板和磷酸鐵鋰保護板,一般三元電芯電壓范圍為2.7-4.2v,而磷酸鐵鋰則是2.5-3.6v。保護板的電流保護,一方面是防止充電電流太大,另一方面是防止放電電流太大。過大的電流,會傷害電池,也可能燒壞保護板自身。首先,保護板有一個基本的關鍵參數:放電電流和充電電流。該電流是保護板的持續放電或充電電流,它表示了保護板自己的載流能力,和電池無關。除了該參數以外,保護板還有一對電流參數,即充電保護電流和放電保護電流。顧名思義,就是在充電或者放電過程中,電流超過該值的大小就關斷。電流的保護也是有延時的,不過電流保護的恢復是自動的,只要電流減小就會自動恢復。對于電池管理系統而言,除了均衡功能外,均衡策略的制定同樣非常重要。電動三輪車BMS電池管理系統軟件開發
均衡是BMS鋰電池保護板中重要的一個環節。動力電池BMS保護芯片
儲能BMS主動均衡和被動均衡的區別主要有能量的方式、啟動均衡條件、均衡電流、成本等,具體區別如下:能量的方式:主動均衡-主動采用儲能器件,將荷載較多能量的電芯部分能量轉移到能量較少的電芯上,是能量的轉移。被動均衡運用電阻,將高荷電電量電芯的能量消耗掉,減少不同電芯之間差距,是能量的消耗。啟動均衡條件:只要壓差大于設定值便開始啟動主動均衡,均衡時間一般是24小時都在工作。在電池快接近充滿的電壓下才啟動被動放電均衡,均衡時間一般就幾個小時。均衡電流:主動均衡電流可達1-10A,充放電過程均可實現,均衡效果明顯。被動均衡電流35mA-200mA不等,均衡電流越大,發熱越嚴重。成本:主動均衡電路復雜,故障率高,成本高。被動均衡軟硬件實現簡單,成本低。隨著電芯制造工藝不斷提升,電芯間的一致性越來越高。出于電路結構和成本考慮,被動均衡的策略仍然是市場的主流選擇。動力電池BMS保護芯片