一、放線菌發酵過程中溶氧電極的選型與優化研究,放線菌發酵的特點放線菌(Actinomycetes)是一類具有分枝菌絲和分生孢子的原核生物,因其菌落呈放射狀而得名。1.其結構特征如下:(1)營養菌絲(基內菌絲):負責吸收營養物質,部分可產生色素,是菌種鑒定的重要依據。(2)氣生菌絲:生長于營養菌絲之上,進一步發育為孢子絲,形成繁殖孢子。2.放線菌發酵具有以下特點:(1)生長緩慢:發酵周期較長。(2)次級代謝產物為主:目標產物多在中后期大量合成。(3)高粘度:發酵液粘度大,易發生掛壁現象。(4)剪切敏感:菌絲對機械剪切力較為敏感,易受損。二、溶氧控制的難點,在放線菌發酵過程中,溶氧控制面臨以下挑戰:1.氧傳遞效率低:中后期菌絲體粘度高,導致氧傳遞效率下降,混合效果差。2.剪切力限制:因菌絲不耐剪切,無法通過提高攪拌速度改善溶氧。3.溶解氧電極可靠性問題:菌絲堵塞問題,發酵中后期,菌絲易堵塞傳感器測量頭,導致數據失真。溶氧電極分為極譜式(需外部電源極化)和原電池式(自發電效應)。河南溶解氧電極批發

漁業和水產養殖離不開溶氧電極的精細監測。對于魚類和其他水生生物而言,溶解氧是生存的必要條件。溶氧電極能夠實時反饋水體中的溶解氧濃度,養殖人員依據這一數據,可及時調整養殖環境。比如,當溶氧濃度過低時,可通過增加增氧設備的運行功率或開啟新的增氧裝置,來提高水體溶氧水平;若溶氧濃度過高,可能會對水生生物造成氣栓等危害,此時可適當減少增氧操作。通過溶氧電極的輔助,能夠保障水生生物健康生長,提高養殖效益 。微基生物耐用溶解氧電極采購國內廠商通過技術創新降低溶氧電極成本,逐步替代進口品牌。

溶氧電極在發酵罐廠的應用中,穩定性至關重要。提高溶氧電極的穩定性可以從多個方面入手。一、選擇合適的溶氧電極類型,目前市場上主要有傳統極譜氧電極和光學溶氧電極兩種類型。光學溶氧電極相對于傳統極譜氧電極具有精度高,漂移小,響應快等優點。在發酵過程中,光學溶氧電極具有代替傳統極譜氧電極的巨大潛力。因此,在發酵罐廠應用中,可以優先選擇光學溶氧電極,以提高穩定性。二、正確安裝和維護,1、溶氧電極安裝位置的選擇,溶氧電極應安裝在發酵罐內能夠準確反映發酵液中溶氧水平的位置。一般來說,應避免安裝在攪拌器附近、進氣口或出氣口等容易產生湍流或氣泡的地方,以免影響測量的準確性。安裝時應確保電極與發酵液充分接觸,同時要注意電極的密封性,防止發酵液泄漏或外部氣體進入影響測量結果。2、定期維護和校準,定期對溶氧電極進行維護和校準是保證其穩定性的重要措施。維護包括清洗電極表面、檢查電極的密封性和電纜連接等。校準可以采用兩點校準法或三點校準法,根據發酵液的實際情況選擇合適的校準液進行校準。校準的頻率應根據發酵罐的使用情況和電極的性能來確定,一般建議每周或每月進行一次校準。
溶氧電極的結構組成決定了其性能與應用范圍。它一般由陰極、陽極、電解質和塑料薄膜構成。陰極作為反應的關鍵部位,對材料要求苛刻,像白金或銀的純度需達 99.999% 以上,且極譜型電極的陰極表面做得很小,直徑通常在 1 - 50μm 范圍,以形成微小的還原電流,這也意味著需要專門的電子放大裝置輔極多做成圓筒狀,表面積比陰極大數十倍,材料同樣要求高純度。電解質常見的有 KOH、KCl、醋酸鉛等,用于維持電極內部的電荷平衡。塑料薄膜如聚四氟乙烯(F4)或其共聚體,需具備耐高溫(>200℃)、透氣性能好的特點,且膜的厚度有講究,一般在 0.01 - 0.05mm,膜對氧的高透性和對 CO? 的低透性對電極響應極為重要 。干擾氣體(如 H2S/CO2)可能穿透膜影響測量,需選擇抗干擾膜材料。

溶氧電極測量得到的數據需要進行處理和分析,才能為發酵過程的控制提供有效的指導。一般來說,可以通過數據采集系統將溶氧電極測量得到的數據傳輸到計算機中,然后使用相應的軟件進行處理和分析。處理和分析的內容包括數據的濾波、平滑、趨勢分析等。通過對溶氧電極數據的處理和分析,可以更好地了解發酵過程中的溶氧變化規律,為優化發酵條件提供依據。為了確保溶氧電極的正常工作,需要對其進行定期的維護和保養。維護和保養的內容包括清洗電極、更換電極膜、校準電極等。在清洗電極時,需要使用適當的清洗劑,避免使用強酸、強堿等腐蝕性清洗劑。在更換電極膜時,需要選擇合適的電極膜,并按照說明書進行更換。定期校準電極可以確保其測量結果的準確性。溶氧電極的電解液添加量需適中,過多可能導致膜膨脹變形。江蘇熒光法溶氧電極報價
溶氧電極無信號輸出時,檢查電源線連接、電解液是否干涸或膜是否破損。河南溶解氧電極批發
如何結合先進的控制技術實現對溶氧電極水平的精確控制以提高產酶效率?1、采用模型參考自適應控制(MRAC)MohamedBahita等人在2022年的研究中,基于遞歸二乘識別方法,提出了一種模型參考自適應控制(MRAC)應用于非線性系統中溶解氧濃度的控制,該系統為活性污泥生物反應器,大量用于廢水處理和凈化操作。通過與經典的PI控制方法進行比較,驗證了該方法在MATLAB環境中的有效性。這種自適應控制技術能夠根據系統的實際運行情況不斷調整控制參數,以實現對溶氧水平的精確控制,從而為提高產酶效率創造有利條件。2、分階段供氧控制策略何寧等人在2004年的研究中,在3L發酵罐上系統研究了溶氧水平對谷氨酸棒桿菌菌體生長及新型生物絮凝劑REA-11合成的影響,提出了生物絮凝劑REA-11合成的分階段供氧控制策略。具體為發酵過程0-16h維持體積傳氧系數kLa為100h?1,16h后降低kLa為40h?1至發酵結束,整個發酵過程通氣量保持在1L?L?1?min?1。采用該分階段供氧控制策略,生物絮凝劑產量達到900mg?L?1,發酵周期縮短,實現了高細胞生長速率和高產物產率的統一。這種控制策略可以根據不同發酵階段的需求,精確調整溶氧水平,為提高產酶效率提供了一種有效的方法。河南溶解氧電極批發