VG微基的pH電極設計聚焦發酵、食品加工、化工等中低壓場景(0-1.0MPa),通過預加壓參比系統和凝膠電解質實現性價比優勢:1. 技術突破預加壓抵消外部壓力:VA-3580-E 系列通過內部預加壓(3-6bar),使外部壓力(如發酵罐 0.5-2bar)無法壓縮玻璃膜,避免晶格間距變化導致的斜率下降。實測在 2bar 壓力下,其響應斜率只下降 1.2%(從 59.16mV/pH 降至 58.4mV/pH),而普通電極下降 8.5%。復合膠體電解液:CA-2390 (i)-B 系列采用KCl - 瓊脂凝膠電解液(黏度 50cP),在壓力驟降時氣泡析出量比液態電解液減少 70%,適合頻繁升降壓的生物反應器。雙隔膜防污染:VA-3580/3581 (i)-A 系列的螺旋式雙隔膜(陶瓷 + PTFE)使介質擴散速度降低 40%,在含蛋白質的發酵液中使用壽命延長至 2 年以上。pH 電極工業型耐高壓設計,支持 0-10bar 壓力環境在線監測。廣州生物合成學用pH傳感器

化工高溫蒸汽發生器排污系統中,排污水溫 160-170℃,pH 監測需抗高溫高壓。這款電極采用螺旋式密封結構,170℃、1.0MPa 蒸汽水中可長期運行,溫度補償范圍擴展至 - 30℃-200℃,補償誤差≤±0.02pH。其玻璃膜表面涂覆納米二氧化硅層,抗結垢能力提升 40%,在連續排污監測中,維護周期達 1000 小時。安裝時需用高壓閥門控制插入深度,每班次用 160℃蒸汽反沖,適用于工業鍋爐、余熱鍋爐排污系統。化工領域的丁辛醇生產中,羰基合成反應的工藝水 pH 監測含有多種有機醛和醇。丁辛醇特定 pH 電極采用耐有機溶劑的固態電解質,可在含有丁醛、辛醛、丁醇等有機物的工藝水中穩定工作,測量精度 ±0.02pH。其抗有機污染的設計能防止有機物在電極表面的吸附,在長期使用中,維護周期可達 30 天。安裝時需選擇在工藝水的澄清段,避免有機相的影響,定期用無水乙醇清洗電極,去除表面附著的有機物,建議每 30 天校準一次,以保證測量精度。鎮江pH電極報價行情pH 電極實驗室數據需雙人復核,避免校準不規范導致結果偏差。

選擇適合特定測量環境的 pH 電極,需注意環境溫度與壓力:別忽略極端條件的影響。溫度和壓力會改變電極的響應斜率、電解液粘度及膜穩定性,需針對性選擇耐溫耐壓型號。溫度方面,常溫(0-60℃)下普通電極(玻璃膜+液態KCl參比)即可滿足需求;高溫(60-130℃)時,需用耐高溫玻璃膜(抗熱震性強)加高溫電解液(如飽和KCl-乙醇溶液,降低沸點),若超過100℃,優先選擇無液接參比電極,避免電解液沸騰流失;低溫(<0℃)則需選防凍電解液(如含甘油的KCl溶液),防止參比液結冰。壓力條件上,高壓場景(如高壓反應釜,>1MPa)需選擇耐壓電極,殼體用不銹鋼或厚壁聚四氟乙烯,且隔膜采用密封設計,防止電解液泄漏。
pH電極在實際使用過程中,操作不當也會導致pH電極產生誤差,為減少誤差發生,在使用時應定期維護 “防堵塞”。每使用 100 小時(或發現讀數漂移時),用0.1mol/L HCl 溶液浸泡電極 1 小時,溶解液接界處可能堵塞的沉積物(如碳酸鈣、金屬氧化物);若為陶瓷液接界,可用軟毛刷輕刷表面(避免用硬物刮擦)。長期停用(>1 周)時,需將電極從高壓系統中取出,浸泡在 3mol/L KCl 溶液中(而非蒸餾水中),防止電解液干涸導致的結晶堵塞。如此不僅能使電極測量數值更為準確,亦能延長pH電極使用壽命。pH 電極環保監測數據異常時,需同步核查電極狀態與采樣流程。

化工生物柴油酯交換反應中,溫度控制在 60-65℃,需精確 pH 監測優化轉化率。這款電極在 60-65℃區間,溫度補償分辨率 0.01℃,其防油涂層可減少甘油附著,響應時間保持≤3 秒。電極內置 pH - 溫度關系模型,可自動修正酯交換反應中的非線性誤差,在連續生產中,測量偏差≤0.01pH。使用時避免與強堿直接接觸,每批次用 60℃甲醇清洗,適用于動植物油脂酯交換工藝。化工硝酸銨溶液濃縮系統中,溫度 110-120℃,高濃度溶液對電極抗鹽析性能要求高。這款電極的液接界采用多孔鈦合金材料,孔徑 20μm,在 115℃、80% 硝酸銨溶液中無鹽析堵塞。其溫度補償在 110-120℃區間誤差≤±0.01pH,玻璃膜采用抗硝酸腐蝕配方,連續運行中漂移≤0.02pH/24h。安裝時需靠近循環泵出口,確保溶液流動,每 8 小時用 110℃熱水沖洗,適配硝酸銨、硝酸鉀濃縮工藝。pH 電極響應時間>10 秒,需檢查電極膜是否干燥或污染嚴重。數字pH電極拆裝
pH 電極工業型可設置校準提醒周期,通過 PLC 自動觸發校準程序。廣州生物合成學用pH傳感器
壓力對 pH 電極的干擾并非不可控,關鍵是通過 **“耐壓電極 + 穩壓系統 + 規范操作”** 的組合拳:選對能抗變形、防氣泡、耐堵塞的電極,控制壓力變化速率,在接近實際工況下校準,并定期維護液接界。做到這幾點,即使在 10MPa 的高壓環境中,也能將測量誤差控制在 ±0.05pH 以內,滿足化工、能源等高精度場景的需求。要減少壓力對 pH 電極測量精度的影響,需從電極選型、系統設計、操作規范三個維度針對性解決 —— 重點是規避玻璃膜變形、電解液氣泡、液接界堵塞等關鍵問題,同時抵消溫度與壓力的協同干擾。廣州生物合成學用pH傳感器