積分球是一個空心球體,其外殼一般為金屬材料,外殼內涂有漫反射材料,外殼壁上有兩個或兩個以上的透光孔。球體的操作方法如下圖所示。聚光鏡和光闌處理后,發光變成平行光,通過積分球入口進入積分球。進入積分球的光會在積分球內漫反射多次,較終從出口均勻射出。通過檢測出口的光通量,可以根據公式轉換反射率、透射率等數據。這些積分球非常適合測量各種顏色的樣品,也適用于測量不透明或高方向的樣品。此外,帶有光陷阱的IS系列積分球還可以區分樣品的鏡面反射和漫反射,并分別進行測量和使用提示。IS系列優良積分球的內表面為PTFE材料,防止灰塵落入和手觸,避免水洗。使用后,請用黑膠帶粘貼開放式積分器入口,防止灰塵落入。積分球在照明設計、顯示器校準等領域發揮著不可或缺的作用。C光源太陽光模擬器模塊化設計

我們將一起揭開積分球的神秘面紗,深入剖析其結構與原理。積分球,這一光學測量中的關鍵儀器,主要用于測試全方面發光光源的各項參數,如色溫、光通量、色坐標、色容差、光效和光譜帶。其工作原理在于,將光源置于球體中心,發出的光線在球體內壁的漫反射涂層上產生多次反射,直至整個球面光通量均勻一致。此時,安裝在球壁上的探頭所讀取的光通量即為光源實際發出的光通量。但需注意,為確保測量準確性,探頭與光源之間必須設置一塊與球內壁涂層相同的隔板,以防止光源光線直接照射探頭。C光源太陽光模擬器模塊化設計積分球在光學薄膜性能測試中也發揮著重要作用,如反射率、透射率測量。

積分球原理和用途:積分球是一種通過內部高反射涂層實現光場均勻化的光學設備,普遍應用于光源性能測試、光學參數測量及校準領域。其主要功能是通過漫反射消除光源方向性差異,為高精度光學分析提供穩定環境。實際均勻性受端口大小/位置、擋板設計、涂層性能、樣品特性、球體尺寸等因素影響,需通過精密設計和校準來優化。理解和保障空間均勻性對于獲得準確可靠的光學測量結果(尤其是反射率和作為均勻光源)至關重要。這一特性使其尤其適用于光通量、色溫和光效等參數的精確測試。
樣品本身:問題: 樣品會吸收光(反射率<100%),且其放置會遮擋部分球壁。高吸收性或大尺寸樣品會明顯破壞球內光場平衡。優化: 使用盡可能小的樣品,選擇低吸收性的背襯或樣品杯。測量時需用已知反射率的標準板(如>99%的PTFE)進行校準以補償樣品引入的擾動。球體尺寸:大球: 端口/擋板/樣品等對球內總表面積的相對占比更小,對均勻性的相對擾動更小,均勻性更好。但信號較弱(光通量密度低)。小球: 信號強,但端口等附件的影響更明顯,均勻性相對較差。支撐結構與內部物體:任何伸入球腔內部的物體(樣品架、支架、線纜)都會吸收和散射光,破壞均勻性。優化: 設計極簡支撐,使用細線纜,物體表面涂覆高反射涂層。其內壁涂層通常選用硫酸鋇或聚四氟乙烯,以實現高反射與低吸收特性。

空間均勻性的形成原理:高漫反射涂層的主要作用:光線撞擊球壁任意一點時,會向整個半球空間均勻散射(遵循余弦定律)。從球腔內任意一點觀察球壁任意一點,其亮度是相同的(各向同性)。球壁涂層(如BaSO?或PTFE)具有近乎完美的朗伯體散射特性。這意味著:這種特性使得每次反射都“重置”了光的方向信息,消除了入射光方向性的影響。多次反射與光混合:光源發出的光(或樣品反射的光)首先照射到球壁某點A。點A將光向整個球腔空間漫反射。這些散射光中的一部分會照射到球壁其他點(B, C, D...),這些點同樣進行朗伯漫反射。經過4-5次或更多次這樣的漫反射后,光在球腔內的傳播路徑變得極其復雜且隨機。較終,來自不同初始位置和方向的光線在球腔內充分混合疊加,使得球內任意位置接收到的光通量(輻照度)基本相等。積分球能幫助研究人員深入理解光源的光分布特性,優化產品設計。小型均勻光源模塊化設計
積分球測試數據可用于優化燈具設計,提高光效和均勻性。C光源太陽光模擬器模塊化設計
相關定義詳解:(1)背景信號:在無信號輸入時,系統中仍會輸出的雜波信號。例如,在積分球中,當光源未點亮且球體密封時,理論上光通量應讀為0,但實際上仍能檢測到微小信號,這些信號即可視為背景信號。(2)偵測極限:設備或測量方法所能檢測到的較小極限。為避免背景信號干擾,使用設備前通常需校零,即濾除背景信號。換句話說,所有低于背景信號的信號都將被濾除,因此背景信號可視為該設備的偵測極限。(3)標準燈:在光學輻射計量中,標準燈用于復制和保持光度、輻射度量單位及量值傳遞。它們是經過校準的燈具,能在特定電流或電壓條件下發出固定光通量,是光學輻射計量中的關鍵標準量具。C光源太陽光模擬器模塊化設計