PPCPs(如防曬劑)在水體中持續積累,傳統工藝難以有效去除。電氧化技術可通過自由基攻擊實現PPCPs的分子結構破壞。以磺胺甲惡唑(SMX)為例,BDD電極在10 mA/cm2電流密度下處理2小時,SMX降解率>95%,且毒性評估顯示中間產物無生態風險。關鍵挑戰在于PPCPs的低濃度(ng/L~μg/L)和高背景有機物干擾,需通過提高電極選擇性(如分子印跡改性)或耦合前置吸附工藝來增強靶向降解。此外,實際水體中碳酸鹽等自由基淬滅劑會降低效率,需優化反應條件以抑制副反應。電化學技術處理不改變水溫。廣東電極除硬

鈦電極可以根據不同的標準進行分類。按照涂層材料的不同,可分為鈦基二氧化釕電極、鈦基二氧化銥電極等。鈦基二氧化釕電極常用于氯堿工業電解制氯,其對析氯反應具有良好的電催化活性和穩定性;鈦基二氧化銥電極則在酸性介質中表現出優異的析氧性能,常用于電鍍、電合成等領域。依據電極的用途,又可分為陽極和陰極。陽極在電解過程中發生氧化反應,陰極則發生還原反應,不同的電極用途決定了其表面涂層和結構的設計差異,以滿足特定的電化學需求 。新疆吸收塔電極需求電極技術適用于高溫循環水。

循環水pH值的穩定對抑制腐蝕和結垢至關重要。電化學pH調節技術通過電解水反應(陽極:2H?O→4H?+O?+4e?;陰極:2H?O+2e?→2OH?+H?)實現酸堿的精細調控。采用分隔式電解槽時,陰極室pH可升至10-11用于防垢,陽極室pH降至2-3用于酸性清洗。某化工廠采用鈦基銥鉭電極系統,通過PLC控制電流密度(5-15 mA/cm2)將循環水pH穩定在8.5±0.3,相比傳統酸堿加藥減少藥劑消耗60%。該技術特別適用于高堿度水質(M-alk>300 mg/L),但需注意陰極室可能生成Ca(OH)?沉淀,需配置超聲波防垢裝置。
高鹽循環水易導致設備腐蝕和結垢,電化學離子交換(EDI)技術結合離子交換樹脂與直流電場,可連續脫除Ca2?、Mg2?和Cl?等離子。以填充混床樹脂的電滲析模塊為例,在15 V電壓下,硬度離子去除率>90%,產水電阻率可達5 MΩ·cm。相比傳統離子交換,EDI無需酸堿再生,且自動化程度高。設計要點包括:①樹脂選擇(強酸/強堿型);②隔板流道優化(防堵塞);③極水循環(防結垢)。某電子廠超純水系統中,EDI使再生廢水排放量減少95%,運行成本降低30%。電化學技術使生物膜厚度從500μm降至50μm。

在氯堿工業中,鈦電極的應用具有性意義。傳統的石墨電極在電解過程中存在壽命短、能耗高、產品質量不穩定等問題,而鈦基二氧化釕電極的出現改變了這一現狀。在電解飽和食鹽水生產氯氣、氫氣和氫氧化鈉的過程中,鈦基二氧化釕陽極對析氯反應具有優異的電催化活性和選擇性,能夠在較低的槽電壓下高效地將氯離子氧化為氯氣,降低了電能消耗。同時,鈦電極的長壽命減少了電極更換頻率,提高了生產的連續性和穩定性,降低了生產成本。如今,鈦電極已成為氯堿工業電解槽的主流電極材料,推動了整個行業的技術進步和產業升級。智能電極自動報警故障。貴州源力循壞水電極除硬
電沉積Zn-PO?涂層使清洗周期延長6倍。廣東電極除硬
循環水系統的腐蝕與結垢往往并存,電化學方法可通過調控水質穩定性指數(LSI)實現雙重控制。陽極生成氧化性物質(如ClO?)抑制腐蝕菌,而陰極反應生成的OH?與HCO??結合生成CO?2?,優先與Ca2?形成可排垢層。采用Ti/Pt陽極與316L不銹鋼陰極組合時,碳鋼掛片的腐蝕速率從0.2 mm/年降至0.02 mm/年,同時結垢傾向指數(PSI)從8降至4。智能控制系統可根據在線pH、ORP和電導率數據動態調節電流(0.5-5 A),適用于水質波動大的工況。某化工廠應用后,設備壽命延長3倍,且年節水效益達200萬元。廣東電極除硬