除了硬件參數,品牌聲譽、售后服務和技術支持同樣至關重要。一個可靠的供應商應能提供及時的技術咨詢、應用培訓、維修和校準服務。檢查其服務網絡是否覆蓋您所在的地區,備件供應是否充足。參考現有用戶的評價和案例,可以幫助您做出更明智的決策。將總擁有成本(包括初始購價、維護費和校準費)納入考量,而非只只比較初次購買價格。人工智能和機器學習技術將深度賦能粒子計數器。未來的系統能夠通過學習海量的歷史數據,自動識別不同設備、不同操作模式下粒子濃度的正常波動模式。當出現偏離該模式的微小異常時,系統能提前預警,提示可能發生的設備故障或過濾器性能衰退,從而實現預測性維護,將被動維修轉變為主動管理,比較大化生產正常運行...
航天器制造:保障“零污染”生產環境航天器**部件(如芯片、傳感器、發動機組件、太陽能電池板)的制造與組裝需在超高潔凈室(如ISO1級~ISO5級,遠高于普通電子廠房潔凈度)中進行,塵埃粒子計數器是潔凈室環境監控的“眼睛”,主要作用包括:潔凈室分級與合規檢測依據國際標準(如ISO14644-1)或航天行業規范,通過計數器檢測不同粒徑(通常關注0.1μm、0.5μm、5μm等關鍵尺寸)的粒子濃度,判定潔凈室是否達到設計等級(如衛星總裝車間需滿足ISO5級,即每立方米空氣中≥0.5μm的粒子數≤1000個)。在潔凈室驗證中,塵埃粒子計數器需進行空態、靜態和動態檢測,確保潔凈室符合設計標準。山東lig...
在制藥行業,各國藥品生產質量管理規范及其附錄(如歐盟的EU GMP Annex 1,美國的FDA cGMP)對潔凈區的分級、監測頻率、報警處理和文件記錄提出了強制性要求。此外,像《美國藥典》<1116>和《中國藥典》等相關章節,也提供了微生物控制和環境監測的指導原則。合規性是企業生存的底線,粒子計數器的選型、使用、校準和數據處理都必須滿足這些法規的具體規定。在美國,聯邦標準209E曾是潔凈室分級的基石,雖然它已被國際通用的ISO 14644-1標準所取代,但其基于英制單位(立方英尺)的分級概念(如Class 100, Class 10,000)在行業內影響深遠,至今仍被很廣引用和理解。了解20...
在食品飲料行業,雖然對無菌的要求不如制藥嚴格,但在某些環節,如奶粉灌裝、飲料無菌冷灌裝、高價值保健食品的生產中,控制空氣中的微粒和微生物同樣重要。粒子計數器用于監控這些關鍵控制點的環境狀況,防止產品受到污染,延長保質期,保障品牌聲譽。一個常見的誤區是,將粒子濃度讀數直接等同于微生物濃度。二者確實存在相關性,因為微生物需要依附于粒子進行傳播,但并非簡單的線性關系。粒子計數器中讀到的絕大多數是無生命的不活性粒子。微生物的存活和分布還受到溫度、濕度、養分等多種因素影響。因此,在制藥等關鍵領域,必須并行開展粒子監測和微生物監測(如沉降菌、浮游菌采樣),兩者數據相互補充,才能整體評估環境的污染風險。塵埃...
在半導體制造領域,塵埃粒子計數器扮演著“生命線”的角色。芯片上的線寬已經進入納米尺度,一顆尺寸只為線寬幾分之一的微粒落在晶圓上,就可能導致電路短路、開路或參數漂移,造成芯片報廢。因此,芯片生產的全過程都必須在超凈環境中進行,其潔凈等級通常達到ISO 1級或更高。粒子計數器不僅用于對潔凈室進行周期性認證,更被集成到每一臺關鍵工藝設備(如光刻機、刻蝕機)的內部,實時監測晶圓周圍的微環境。任何粒子濃度的異常波動都會觸發警報,幫助工程師迅速定位污染源(如設備磨損、人員操作不當或過濾器泄漏),從而比較大限度地減少經濟損失。塵埃粒子計數器的光源主要有激光二極管和氦氖激光器,前者適用于多數場景,后者檢測精度...
除了工業領域,塵埃粒子計數器在醫療衛生機構中也發揮著重要作用。在手術室、骨髓移植病房、重癥監護室(ICU)等高風險區域,空氣中的粒子濃度與微生物濃度存在一定的相關性。雖然計數器不能直接檢測微生物,但通過監測粒子濃度,可以間接評估空氣的潔凈狀況,為數據提供參考。此外,在生物安全實驗室(BSL)中,計數器用于確保負壓環境的氣密性和潔凈度,防止病原微生物泄漏。在疾控中心和科研機構,它也用于氣溶膠研究和空氣凈化設備的性能評估。塵埃粒子計數器,潔凈室監測的準確之選,數據實時掌控!海南蘇凈塵埃粒子計數器排行粒子計數器輸出的直接數據是各粒徑通道的粒子濃度,單位通常是“個/立方米”。解讀這些數據時,需要同時關...
隨著半導體工藝進入亞10納米時代,對納米級粒子的檢測需求日益迫切。傳統的單光散射技術在面對0.1微米以下的粒子時,信號強度急劇下降。為此,凝聚核粒子計數技術被更廣地集成到好的計數器中,使其檢測下限延伸至2-3納米。此外,采用多角度散射、熒光檢測等新技術,也能在一定程度上增強對超細粒子和生物氣溶膠的識別能力。物聯網技術正在徹底改變粒子計數器的使用模式。新一代的在線式計數器普遍支持以太網、Wi-Fi或4G/5G通信,能夠將實時數據無縫上傳至云端服務器。用戶可以通過網頁瀏覽器或手機App,在全球任何地方查看監測狀態、接收報警信息。大數據分析平臺可以對海量的歷史數據進行挖掘,建立預測性模型,實現從“事...
塵埃粒子計數器在實際使用過程中,容易受到外界環境因素的干擾,導致檢測數據不準確,因此儀器的抗干擾設計至關重要。常見的干擾因素主要包括環境光線干擾、振動干擾、電磁干擾和氣流干擾,針對這些干擾,儀器通常會采取相應的抗干擾措施。在抗環境光線干擾方面,儀器的檢測腔體會采用遮光設計,使用不透光的金屬材質或黑色工程塑料制作,同時在光電傳感器前端安裝窄帶濾光片,只允許與光源波長一致的光線通過,有效過濾外界雜光,避免雜光對散射光信號的干擾。在抗振動干擾方面,便攜式計數器會在內部關鍵部件(如光源、光電傳感器、采樣泵)周圍設置減震墊,減少手持或移動過程中振動對部件穩定性的影響;固定式計數器則會配備專門使用的的減震...
塵埃粒子計數器的采樣時間設定是影響檢測結果準確性和檢測效率的關鍵參數,合理的采樣時間需根據被監測環境的潔凈度等級、檢測目的以及儀器的采樣流量綜合確定。在潔凈度等級較高的環境(如 Class 1 至 Class 100 級)中,空氣中的微粒數量較少,為確保采集到足夠數量的微粒樣本,提高檢測結果的統計可靠性,通常需要設定較長的采樣時間。例如,在半導體行業的 Class 1 級無塵室中,若儀器采樣流量為 2.83L/min,采樣時間一般設定為 10-30 分鐘,確保能夠采集到足夠數量的微粒進行計數分析,避免因樣本量過少導致檢測結果誤差過大。在潔凈度等級較低的環境(如十萬級、三十萬級)中,空氣中的微粒...
在現代潔凈環境管理中,粒子計數器很少單獨工作。它通常與微生物采樣器、浮游菌采樣器、風速儀、壓差計、溫濕度傳感器等一起,構成一個完整的環境監測系統。通過數據集成平臺,可以將粒子濃度數據與風速、壓差等參數進行關聯分析。例如,當粒子濃度異常升高時,可以同時檢查該區域的壓差是否變為負壓,導致非潔凈空氣倒灌,從而進行綜合判斷和快速響應。早期的粒子檢測依賴于顯微鏡和人工計數,效率低下且主觀性強。20世紀中葉,隨著激光技術和電子學的進步,前面臺商業化的光散射式粒子計數器誕生,實現了自動、連續的測量。此后,儀器朝著小型化、智能化、高精度化的方向飛速發展。微處理器的引入使得儀器具備了實時數據處理和存儲能力,而通...
激光光源是塵埃粒子計數器的“心臟”,其性能直接決定了儀器的檢測下限、精度和穩定性。現代粒子計數器普遍采用半導體激光二極管作為光源,其優勢在于體積小、壽命長、功耗低且輸出光束質量高。為了獲得比較好的檢測效果,激光束需要被整形為一個非常細小、能量密度均勻的光斑,即“探測腔”。這個過程需要通過復雜的透鏡組進行準直和聚焦。一個高質量的光源系統能夠確保在探測腔內形成穩定且強大的光場,使得即便是粒徑極小的粒子(如0.1微米)穿過時,也能產生足以被探測器識別的散射光信號。同時,激光器的波長選擇也至關重要,較短波長的藍光或紫外激光由于散射效率更高,更有利于檢測超細粒子,但成本和技術難度也相應增加。高精度塵埃粒...
硬件是基礎,軟件則是靈魂。現代粒子計數器的配套軟件功能日益強大,不僅能夠進行簡單的數據記錄和圖表顯示,還集成了符合GMP要求的電子簽名、審計追蹤、用戶權限管理等功能。它們能夠自動生成符合各類國際標準的認證報告,減輕了用戶的數據處理負擔。高級的數據分析工具,如統計分析過程控制圖,可以幫助用戶識別過程的隨機波動與異常波動,實現更精細化的環境質量控制。傳統的光散射粒子計數器主要根據粒徑進行分類,但它無法區分粒子的化學組成。例如,它無法判斷一個1微米的粒子是 harmless的鹽晶,是有害的金屬磨損顆粒,還是攜帶活菌的有機粒子。這在一定程度上限制了其在污染源準確診斷中的應用。解決這一挑戰需要發展多技術...
塵埃粒子計數器的分類方式多樣。按流量可分為小流量(如0.1 CFM,即每分鐘立方英尺)、中流量(如1 CFM)和大流量(如50 L/min或更高)計數器。小流量儀器通常便攜,適合局部或移動檢測;而大流量儀器采樣速度快,能更快地反映低濃度環境的粒子狀況,常用于認證和關鍵點監控。按使用場景可分為便攜式、臺式和在線式。便攜式內置電池和采樣泵,靈活性高;臺式功能更完善,適合實驗室分析;在線式則通過管道網絡多點、連續監測,并集成到環境監控系統中,實現實時數據反饋和報警。塵埃粒子計數器,潔凈室監測的準確之選,數據實時掌控!四川pms塵埃粒子計數器源頭廠家新能源電池(如鋰電池)的生產過程對環境潔凈度有著嚴格...
除了工業領域,塵埃粒子計數器在醫療衛生機構中也發揮著重要作用。在手術室、骨髓移植病房、重癥監護室(ICU)等高風險區域,空氣中的粒子濃度與微生物濃度存在一定的相關性。雖然計數器不能直接檢測微生物,但通過監測粒子濃度,可以間接評估空氣的潔凈狀況,為數據提供參考。此外,在生物安全實驗室(BSL)中,計數器用于確保負壓環境的氣密性和潔凈度,防止病原微生物泄漏。在疾控中心和科研機構,它也用于氣溶膠研究和空氣凈化設備的性能評估。28.3L 流量塵埃粒子計數器嚴格遵循 ISO 14644-1 標準,百級潔凈室檢測效率達行業前端!上海tsi塵埃粒子計數器廠家在性能參數方面,有幾個關鍵指標至關重要。首先是粒徑...
誤計數是指儀器將非粒子信號(如電子噪聲、背景光波動)誤判為粒子的事件。高質量的計數器會采用先進的信號鑒別技術(如脈沖形狀分析)來有效抑制誤計數。重合誤差則發生在兩個或多個粒子非常接近地同時通過探測腔時,它們產生的散射光信號會疊加在一起,被系統誤判為一個更大的粒子,從而導致對小粒徑粒子的少計和大粒徑粒子的多計。為了避免重合誤差,儀器設計時需要根據其比較大粒子濃度處理能力來設定合適的采樣流量和探測腔尺寸,或者在軟件中采用重合損失修正算法對數據進行補償。其技術正朝著更高精度、更小體積和更智能化的方向發展。廣西空氣塵埃粒子計數器哪家好核工業領域對環境的安全性和潔凈度要求極為嚴格,尤其是在核燃料加工、核...
另一個發展趨勢是微型化和集成化。微機電系統(MEMS)技術的發展,使得制造芯片級別的光學粒子傳感器成為可能。這種傳感器體積小、功耗低、成本低廉,雖然精度可能不及大型臺式儀器,但非常適合集成到物聯網(IoT)設備、智能手機或可穿戴設備中,實現無處不在的空氣質量感知。未來,我們可能會看到由成千上萬個微型粒子傳感器構成的監測網絡,對城市空氣質量、室內環境或大型廠房進行高分辨率、實時的三維粒子分布測繪。此外,多功能融合也是重要方向。單一的粒子計數信息有時不足以完善評估空氣品質或污染來源。因此,將粒子計數器與揮發性有機物(VOC)傳感器、二氧化碳傳感器、甲醛傳感器等集成于一體的多功能室內空氣質量(IAQ...
航空領域:提升客機與戰機可靠性除航天場景外,塵埃粒子計數器在航空領域也有重要應用,**聚焦于“設備壽命”與“飛行安全”:民用客機客艙空氣質量管理客機客艙空氣通過發動機壓氣機引入(經過濾后),計數器可定期檢測客艙通風系統的濾網過濾效果,避免外界塵埃(如高空沙塵、地面污染物)進入客艙,同時監測客艙內微粒濃度(如乘客攜帶的粉塵、食物碎屑),保障乘客呼吸健康。戰機航電系統防護戰機在野戰環境下(如沙漠、沿海地區)起降時,空氣中的沙塵、鹽霧微粒易侵入航電艙(如雷達系統、飛控計算機),導致設備腐蝕或短路。計數器可用于戰機維護時的航電艙潔凈度檢測,確保維護后艙內無殘留微粒,提升戰機在惡劣環境下的出勤率。賽納威...
在制藥行業,尤其是在無菌藥品(如注射劑、疫苗、生物制劑)的生產中,塵埃粒子計數器是滿足《藥品生產質量管理規范》要求、確保產品無菌性的關鍵工具。空氣中的微生物(細菌)通常附著在塵埃粒子表面進行傳播,因此,控制粒子濃度就等于控制了微生物污染的風險。計數器被廣泛應用于對潔凈區(如灌裝線、無菌操作區)進行動態監測,確保其符合A級、B級等相應的潔凈標準。監測數據是產品放行的重要依據,也是應對藥品監管機構審計的必備文件,直接關系到患者的用藥安全和企業的合規運營。定期對粒子計數器進行校準,保證測量結果的可靠性。山西0.1um塵埃粒子計數器源頭廠家校準是確保塵埃粒子計數器數據準確性的基石。由于光學器件的磨損、...
校準是確保塵埃粒子計數器數據準確性的基石。由于光學器件的磨損、電子元件的漂移或環境變化,儀器的性能會隨時間發生變化,因此必須定期進行校準。校準通常依據國際或國家標準(如ISO 21501-4, JIS B 9921, GB/T 6167),使用經認證的標準粒子(如聚苯乙烯乳膠球PSL)在嚴格控制的環境下進行。校準過程包括粒徑準確度、計數效率、流量準確度等項目的測試。只有通過校準,儀器出具的檢測報告才具有公信力,才能作為潔凈室認證、工藝驗證和法律仲裁的有效依據。環境監測領域,塵埃粒子計數器可檢測不同大小的粉塵微粒,為污染治理提供數據支持。江西潔凈室塵埃粒子計數器哪家好塵埃粒子計數器的光源質量直接...
在制藥行業,各國藥品生產質量管理規范及其附錄(如歐盟的EU GMP Annex 1,美國的FDA cGMP)對潔凈區的分級、監測頻率、報警處理和文件記錄提出了強制性要求。此外,像《美國藥典》<1116>和《中國藥典》等相關章節,也提供了微生物控制和環境監測的指導原則。合規性是企業生存的底線,粒子計數器的選型、使用、校準和數據處理都必須滿足這些法規的具體規定。在美國,聯邦標準209E曾是潔凈室分級的基石,雖然它已被國際通用的ISO 14644-1標準所取代,但其基于英制單位(立方英尺)的分級概念(如Class 100, Class 10,000)在行業內影響深遠,至今仍被很廣引用和理解。了解20...
誤計數是指儀器將非粒子信號(如電子噪聲、背景光波動)誤判為粒子的事件。高質量的計數器會采用先進的信號鑒別技術(如脈沖形狀分析)來有效抑制誤計數。重合誤差則發生在兩個或多個粒子非常接近地同時通過探測腔時,它們產生的散射光信號會疊加在一起,被系統誤判為一個更大的粒子,從而導致對小粒徑粒子的少計和大粒徑粒子的多計。為了避免重合誤差,儀器設計時需要根據其比較大粒子濃度處理能力來設定合適的采樣流量和探測腔尺寸,或者在軟件中采用重合損失修正算法對數據進行補償。賽納威塵埃粒子計數器生產廠家提供上門調試,工程師 1 對 1 培訓,設備上手零難度!手持式塵埃塵埃粒子計數器使用方法推進系統與燃料系統:預防“微粒誘...
主要應用領域:醫療器械與醫院傳染控制許多醫療器械,如心臟支架、人工關節、一次性注射器等,在生產過程中必須保持極高的潔凈度,以避免引入任何異物或微生物,導致術后傳染或器械功能障礙。粒子計數器用于監控這些產品的生產環境。同時,在醫院內部,手術室、骨髓移植病房、重癥監護室等關鍵區域對空氣質量有嚴苛要求。通過粒子計數器的持續監測,可以評估層流系統的工作效率、指導清潔消毒流程、并預警潛在的傳染風險,為醫患人員創造一個更安全的環境。激光塵埃粒子計數器支持 6種粒徑通道(0.1/0.2/0.3/0.5/1.0/5.0μm),半導體潔凈室污染物分級監測更細致!江蘇0.1um塵埃粒子計數器哪家便宜氦氖激光器體積...
光學傳感器窗口的清潔度至關重要,任何污漬或劃痕都會散射激光,產生背景噪聲。清潔時應極其小心,使用專門使用的鏡頭紙和清潔劑。激光器作為主要部件,有其標稱的使用壽命(通常為數萬小時),需要記錄累計運行時間,并在接近壽命終點時計劃更換,以免突然失效影響關鍵監測任務。泵和流量傳感器也需要定期檢查,確保其性能未因長期使用而衰減。校準是連接儀器讀數與國際標準的橋梁。由于激光功率衰減、光學元件老化、電子元件漂移等因素,儀器的粒徑響應和計數效率會隨時間發生變化。因此,必須按照制造商的建議或相關法規的要求(通常為每年一次),將儀器送至具備資質的計量機構進行校準。校準報告是儀器數據有效性的法定依據,在GMP、FD...
除了工業領域,塵埃粒子計數器在醫療衛生機構中也發揮著重要作用。在手術室、骨髓移植病房、重癥監護室(ICU)等高風險區域,空氣中的粒子濃度與微生物濃度存在一定的相關性。雖然計數器不能直接檢測微生物,但通過監測粒子濃度,可以間接評估空氣的潔凈狀況,為數據提供參考。此外,在生物安全實驗室(BSL)中,計數器用于確保負壓環境的氣密性和潔凈度,防止病原微生物泄漏。在疾控中心和科研機構,它也用于氣溶膠研究和空氣凈化設備的性能評估。國產塵埃粒子計數器性價比,賽納威源頭廠家直供,品質售后雙保障!江蘇28.3L塵埃粒子計數器排行面對未來,塵埃粒子計數器技術將繼續深化和創新。在檢測極限方面,隨著半導體工藝進入埃米...
隨著汽車電子技術的快速發展,汽車電子產品(如車載芯片、傳感器、自動駕駛系統部件)的精度和集成度越來越高,對生產環境的潔凈度要求也日益嚴苛,塵埃粒子計數器在汽車電子行業的生產過程中發揮著重要的質量管控作用。在車載芯片制造環節,芯片的尺寸越來越小,制程工藝不斷提升,空氣中的微小微粒若附著在芯片表面,會導致芯片電路損壞或性能失效。因此,芯片制造車間需達到 Class 100 級甚至更高潔凈度,車間內安裝的固定式塵埃粒子計數器需實時監測空氣中粒徑≥0.3μm 和≥0.5μm 的微粒濃度,確保符合生產標準。一旦微粒濃度超標,系統會立即通知工作人員檢查空氣凈化系統,防止不合格芯片流入后續環節。在汽車傳感器...
塵埃粒子計數器的基本工作原理塵埃粒子計數器作為檢測空氣中微粒數量和大小的精密儀器,其主要工作原理基于光散射技術。當含有微粒的空氣樣本被吸入儀器后,會穿過一束高亮度的激光光束。此時,空氣中的每一個微粒都會對激光產生散射作用,散射光的強度與微粒的大小、形狀以及折射率密切相關 —— 通常情況下,微粒越大,產生的散射光強度越強。儀器內部的光電傳感器會捕捉到這些散射光信號,并將其轉化為相應的電脈沖信號。隨后,信號處理系統會對電脈沖的幅度和數量進行分析:脈沖幅度對應微粒的粒徑大小,通過與標準粒徑顆粒產生的脈沖幅度進行對比,可精確劃分微粒的尺寸區間;脈沖數量則直接對應單位體積內該粒徑區間微粒的數量。主要終,...
光學探測腔是粒子計數器中較精密的區域,它是激光與粒子發生相互作用的“舞臺”。其設計必須比較大限度地減少雜散光的干擾,確保只有粒子產生的散射光才能被探測器接收。腔體內部通常經過特殊處理,如涂覆高吸光材料,以消除內壁反射。與光學系統緊密配合的是氣流系統,它負責將待測空氣以恒定且層流的方式輸送通過探測腔。層流的意義在于,它能夠保證每個粒子都以近乎相同的速度和軌跡單獨穿過激光束中心,避免粒子間相互遮擋或同時穿過光束造成計數誤差。這種穩定、可控的氣流通常由一個精密的真空泵或風機產生,并輔以流量傳感器和反饋控制電路,以確保采樣體積的準確性,這是后續進行濃度計算的基準。賽納威高精度激光塵埃粒子計數器,半導體...
現代塵埃粒子計數器不僅具備高精度的檢測能力,還配備了完善的顯示與數據處理功能,能夠為用戶提供直觀、便捷的操作體驗和整體的數據分析支持。在顯示方面,大多數塵埃粒子計數器采用高清液晶顯示屏(LCD)或有機發光二極管顯示屏(OLED),可清晰顯示實時檢測數據,包括不同粒徑區間(如 0.3μm、0.5μm、1.0μm、5.0μm 等)的微粒數量、單位體積濃度、采樣時間、采樣流量、當前潔凈度等級(如 ISO 8 級、Class 10000 級等)以及儀器工作狀態(如采樣中、待機、故障等)。部分更好儀器還支持觸摸屏操作,用戶可通過觸摸屏幕輕松設置采樣參數(如采樣流量、采樣時間、粒徑通道)、查看歷史數據和生...
光電探測器(如光電倍增管或雪崩光電二極管)接收到散射光脈沖后,將其轉換為一個微弱的電流脈沖信號。這個信號首先需要經過前置放大器進行初步放大,然后通過主放大器進行進一步的處理和整形,形成電壓脈沖。脈沖的峰值高度(電壓幅值)與粒子的大小成正比。隨后,脈沖高度分析電路會將每個脈沖的幅值與一系列預先設定的電壓閾值進行比較,這些閾值對應著不同的粒徑通道(例如,0.3μm, 0.5μm, 1.0μm, 5.0μm等)。當一個脈沖的幅值落在某個通道范圍內時,該通道的計數就會增加一。與此同時,強大的微處理器和內置軟件會實時記錄這些數據,計算各粒徑檔的粒子濃度,并可通過屏幕顯示、內部存儲或外部接口輸出。儀器通過...
某些工業環境對計數器提出了極端要求。例如,在高溫、高濕的工藝區域,水蒸氣冷凝可能干擾光學檢測,或被誤計為粒子。在含有有機溶劑蒸汽的環境中,蒸汽分子本身可能產生背景散射,或者腐蝕儀器的光學和電子部件。針對這些特殊場景,需要開發具有樣品氣加熱、稀釋采樣等特殊功能的專門使用型計數器,以確保測量的準確性。國際標準化組織發布的ISO 14644系列標準是潔凈室及相關受控環境領域的好的指南。其中ISO 14644-1詳細規定了根據空氣中懸浮粒子濃度對潔凈室進行分級的方法,并明確了認證所需的采樣點數量、采樣量和數據處理規則。粒子計數器的使用和潔凈室的測試認證,必須嚴格遵循該標準,以確保全球范圍內測試結果的一...