化工生產中投料方式對攪拌設計有哪些影響?不同物理狀態的物料(固體、液體、氣體)對攪拌的“分散、懸浮、傳質”需求差異明顯,直接決定攪拌器的中心設計方向:固體投料(如顆粒、粉末)中心挑戰:避免固體沉降、團聚,實現均勻分散(尤其高比重或高粘度固體)。若固體顆粒易團聚(如催化劑粉末),需搭配高剪切分散盤:需形成“上下循環流”,避免固體在投料點堆積。液體投料(如互溶液體、不互溶溶劑)中心挑戰:快速消除濃度梯度(互溶體系)或實現液-液乳化(不互溶體系)。對攪拌設計的影響。氣體投料(如反應釜曝氣、氧化反應通氧)中心挑戰:氣泡破碎(增大氣液接觸面積)、傳質效率(如O?溶解速率)。對攪拌設計的影響:...
攪拌速度對環氧大豆油的性能具體有哪些影響?攪拌速度對環氧大豆油的性能有諸多影響,具體如下:對反應程度的影響速度過快:可能使反應過于劇烈,導致副反應增加,如大豆油中的雙鍵過度反應,或已生成的環氧基團發生開環等副反應,從而降低產品的環氧值。速度過慢:物料混合不充分,局部濃度差異大,會使反應釜內不同部位反應進程不同,導致反應不完全,產品環氧值難以達到預期指標。對產品外觀的影響速度過快:容易使反應體系產生乳化現象,導致油相和水相難以分離,產品外觀可能變得渾濁,透明度降低。同時,還可能促使生成更多的著色物質,導致環氧大豆油的色澤加深。速度過慢:因物料混合不均、反應進程不一致,會導致產品的色澤...
化工生產中固液混合或是液液混合對攪拌設計要求有哪些區別?混合目標與中心需求不同固液混合:中心目標是實現固體顆粒的懸浮、分散、溶解或防止沉降,需確保固體顆粒均勻分布在液體中,或與液體充分接觸(如反應、溶解)。液液混合:根據液體是否互溶,目標分為兩種:互溶液體:實現整體均勻混合(如調配濃度);不互溶液體:實現分散/乳化(如將一種液體破碎為微小液滴分散在另一種液體中)或傳質強化(如萃取過程中增大相界面面積)。2.攪拌器類型與結構設計不同固液混合:需優先強化軸向循環能力(推動液體上下方流動),避免固體顆粒在容器底部堆積。常用攪拌器類型:推進式槳(軸向流強,適合低粘度液體中低濃度固體懸?。?;...
溶液的pH值是如何受到攪拌速度影響的?影響物質混合均勻性:攪拌速度會影響溶液中酸堿物質的混合情況。如果攪拌速度過慢,溶液中的酸堿成分可能分布不均勻,導致局部區域的pH值出現較大差異。例如,在一個含有酸性溶質和堿性溶質的溶液中,慢速攪拌時,酸性溶質和堿性溶質不能充分混合,會出現部分區域酸性較強,部分區域堿性較強的情況,整體溶液的pH值測量結果可能不穩定或不準確。而適當提高攪拌速度,可以使酸性和堿性物質充分混合,溶液的pH值更能反映整體的酸堿平衡狀態,數值也會更穩定。改變化學反應速率:許多與pH值相關的化學反應受攪拌速度影響。以水解反應為例,攪拌速度加快能增加反應物之間的接觸機會,使水解反應更充分...
為什么攪拌器設計計算很重要?攪拌器的設計計算是工業生產中確保設備高效、安全、經濟運行的中心環節,其重要性體現在以下多個維度:攪拌器的中心功能是實現物料的混合、傳質(如反應、溶解)、傳熱(如加熱/冷卻)、懸?。ㄈ绻桃悍稚ⅲ┗蛉榛裙に嚹繕恕TO計計算的準確性直接決定了攪拌效果:若攪拌強度不足(如葉輪轉速過低、功率不夠),會導致物料混合不均。若攪拌強度不足(如葉輪轉速過低、功率不夠),會導致物料混合不均、局部濃度/溫度偏差,引發反應不充分、副產物增多(如化工合成)、結晶粒度不均(如制藥)等問題,直接影響產品純度、性能或合格率。若攪拌過度(如剪切力過大),可能破壞物料結構(如乳液破乳、生物...
槳葉傾斜角度的調整會影響攪拌器的能耗,具體分析如下:角度對流體阻力的影響:傾斜角度變化會改變槳葉與流體的作用方式和接觸面積。較小傾斜角度時,槳葉推動流體主要產生軸向流動,流體相對平緩地流過槳葉,受到的阻力較小。隨著傾斜角度增大,流體的徑向流動增強,槳葉對流體的推動和剪切作用更加復雜,流體與槳葉的摩擦和碰撞加劇,導致阻力增大,從而需要消耗更多能量來維持攪拌器運轉。例如,當葉片角度從17°增加到90°時,攪拌器周圍的流速范圍增大,能耗也隨之變化1。角度對流動模式和湍流強度的影響2:不同的傾斜角度會產生不同的流動模式和湍流強度。較小傾斜角度產生的軸向流動,使流體在容器內形成相對簡單的循環...
攪拌速度和時間對醇酸樹脂的以下性能影響相對較小:凍融穩定性:醇酸樹脂的凍融穩定性主要與樹脂的分子結構、親水親油平衡以及所添加的助劑等因素有關。攪拌速度和時間通常不會直接改變這些內在因素,因此對凍融穩定性的影響較小。例如,在一些水性醇酸樹脂的制備中,即使攪拌速度和時間有所變化,但只要樹脂的配方和合成工藝相對穩定,其凍融穩定性一般不會受到***影響7。熱儲存穩定性:熱儲存穩定性主要取決于樹脂的化學組成、分子量分布以及是否存在易分解或易反應的基團等。雖然攪拌速度和時間會影響反應的均勻性和程度,但在正常的生產工藝范圍內,對于已經合成好的醇酸樹脂,其熱儲存穩定性受攪拌速度和時間的影響相對較小...
釜內擋板對于源奧網狀消泡槳效果有何提升作用?一、打破“液面打旋”,解決網狀消泡槳的“覆蓋死角”網狀消泡槳的中心痛點之一是:無擋板時,攪拌軸旋轉會帶動液體形成“中心漩渦(打旋流)”——泡沫會被離心力甩向釜壁,堆積在邊緣區域,而網狀消泡槳(通常安裝在軸中心液面附近)只能處理中心泡沫,形成“邊緣泡沫堆積、中心消泡過?!钡乃澜?。釜內擋板(通常設4塊,寬度為釜徑1/12-1/10)的關鍵作用是切斷打旋流的圓周運動:擋板插入液體后,會對圓周流產生“阻擋力”,強制將打旋流轉化為“軸向+徑向的復合流場”;被甩向釜壁的泡沫,會在擋板的“導向作用”下,沿釜壁向向下方流動動,再被底層軸流槳(若搭配)向上...
精細化工中滴加工藝作用有哪些? 在化工生產中,滴加工藝是一種通過將一種或多種物料(通常為液體、熔融態或低黏度懸浮液)以“滴加”形式緩慢、均勻地加入到反應體系中的單元操作,其中心是通過控制物料加入的速率和分布,實現反應過程的可控性,避免局部過度反應、劇烈放熱或副產物生成。一、滴加工藝的中心目的滴加工藝的設計圍繞“控制反應節奏”展開,具體目標包括:抑制劇烈放熱:對于強放熱反應(如中和、氧化、硝化、聚合等),若物料一次性加入,會導致局部溫度驟升,可能引發沖料、分解甚至危險;滴加可通過分散物料降低單位時間放熱量,配合溫控系統實現溫和反應。避免局部濃度過高:當反應物之一過量會引發副反應(如A與...
化工生產中固液混合或是液液混合對攪拌設計要求有哪些區別?混合目標與中心需求不同固液混合:中心目標是實現固體顆粒的懸浮、分散、溶解或防止沉降,需確保固體顆粒均勻分布在液體中,或與液體充分接觸(如反應、溶解)。液液混合:根據液體是否互溶,目標分為兩種:互溶液體:實現整體均勻混合(如調配濃度);不互溶液體:實現分散/乳化(如將一種液體破碎為微小液滴分散在另一種液體中)或傳質強化(如萃取過程中增大相界面面積)。2.攪拌器類型與結構設計不同固液混合:需優先強化軸向循環能力(推動液體上下方流動),避免固體顆粒在容器底部堆積。常用攪拌器類型:推進式槳(軸向流強,適合低粘度液體中低濃度固體懸浮);...
常見消泡槳葉形狀有哪些?一、鋸齒形消泡槳葉片邊緣呈連續鋸齒狀(齒深通常3-10mm),整體為平板或微傾斜結構。旋轉時,鋸齒能快速切割液面及淺層的泡沫,將大泡沫破碎為小泡沫,同時借助輕微的徑向流帶動泡沫接觸空氣,加速破裂。這類形狀適合泡沫量大、流動性較好的物料,如食品行業的飲料混合、乳制品調配,或水處理中的生化曝氣池,能在低轉速下實現高效破泡,且不易卷入新空氣。二、弧形消泡槳葉片為平滑曲面設計(曲率半徑多與罐徑匹配),無尖銳邊緣。工作時,弧形葉片通過平緩的軸向推動,將液面泡沫推向罐壁,利用罐壁摩擦及泡沫自身重力實現破裂,破泡過程剪切力小,不會破壞物料中的敏感成分。適合對剪切敏感的物料...
軸流型槳葉離底高度對攪拌效果的影響有哪些?一、離底高度過低:易引發局部湍流與罐底磨損當離底高度小于槳葉直徑的倍時,槳葉貼近罐底旋轉,軸向流難以向上擴散,易在罐底形成強局部湍流。一方面,固體顆粒(如礦石粉、結晶顆粒)易被湍流“裹挾”在槳葉周圍,反而出現局部堆積,無法均勻分散至上層液體;另一方面,槳葉與罐底間隙過小,可能刮擦罐底涂層(如食品行業的防粘涂層),導致物料污染,同時湍流沖擊罐底,增加設備磨損風險,尤其在處理高硬度顆粒時,磨損問題更突出。二、離底高度過高:導致罐底積料與混合死區若離底高度大于槳葉直徑的1倍,槳葉與罐底距離過遠,軸向流的向下推動力減弱,無法有效帶動罐底沉降性物料(...
攪拌器的哪些因素會影響泥漿桶的攪拌效果?回答1:以下是攪拌器中影響泥漿桶攪拌效果的一些因素:電機功率:功率決定了攪拌器的扭矩和轉速。功率越大,能提供的扭矩和轉速越高,越有利于攪拌大量或高粘度的泥漿,使泥漿攪拌得更均勻、充分。但功率過高會造成能源浪費和成本增加,需根據泥漿桶的大小、泥漿的性質等因素合理選擇電機功率。攪拌葉輪設計:葉輪形狀:不同的葉輪形狀適用于不同的攪拌目的。例如,推進式葉輪能產生強的軸向流動,適合大容量、低粘度泥漿的攪拌;渦輪式葉輪則產生強的徑向流動和剪切力,適合高粘度泥漿和要求攪拌均勻度高的場合;錨式和框式葉輪適用于高粘度泥漿,能防止泥漿粘壁和沉淀。此外,一些特殊形...
攪拌器的攪拌速度和時間對環氧樹脂的性能有哪些影響?攪拌器的攪拌速度和時間對環氧樹脂的性能有***影響,具體如下:攪拌速度的影響:混合均勻性:攪拌速度適中時,能使環氧樹脂與固化劑等成分形成良好的對流和湍流,各成分充分接觸和混合,實現均勻混合。若速度過慢,物料混合不充分,局部濃度差異大,會導致固化不完全或固化不均勻。速度過快,可能會使物料在攪拌器周圍形成渦流,部分環氧樹脂被過度攪拌,而容器邊緣或角落的則混合不充分,同樣影響混合效果。氣泡引入:攪拌速度過高容易引入大量空氣,形成氣泡。這些氣泡在后續固化過程中若未完全去除,會影響環氧樹脂固化后的性能,如降低強度、增加脆性等,還會影響產品的外...
攪拌器消泡槳葉主要應用于哪些工藝段?攪拌器消泡槳葉中心作用是抑制或消除攪拌過程中產生的氣泡,避免氣泡影響物料質量、工藝效率或設備運行,其應用場景集中在易因攪拌、反應產生大量氣泡的工藝段,具體可分為五大類:一、生物發酵工藝的關鍵階段在微生物發酵(如抗生藥劑、酶制劑、益生菌生產)中,消泡槳葉主要用于種子培養階段與發酵階段。微生物代謝會產生二氧化碳等氣體,搭配攪拌的剪切作用易形成穩定泡沫,泡沫過多會占據發酵罐容積、阻礙氧氣傳遞,甚至導致物料溢出。二、涂料與油墨的制備階段涂料、油墨生產中,調漆階段與顏填料分散階段是消泡槳葉的中心應用場景。高速分散顏填料時,空氣易被卷入物料內部,形成微小氣泡...
攪拌速度如何影響DOTP產品的粘度?攪拌速度主要通過以下幾個方面影響DOTP產品的粘度:影響分子間相互作用:適當的攪拌速度可以使DOTP分子在體系中更均勻地分布,減少分子間的局部聚集,降低分子間的相互作用力,從而使粘度降低。若攪拌速度過慢,分子容易發生團聚,分子間的距離相對較近,相互作用力增強,導致粘度升高。而攪拌速度過快,可能會使分子鏈受到過度的剪切作用,分子鏈間的纏結被破壞,分子間的相互作用力減弱,粘度也會降低,但這種過度剪切可能會對產品的分子結構和性能產生不利影響。影響反應進程和產物結構:攪拌速度會影響DOTP生產過程中的反應速率和轉化率。合適的攪拌速度可以使反應物充分混合,...
攪拌速度和時間對醇酸樹脂的以下性能影響相對較小:凍融穩定性:醇酸樹脂的凍融穩定性主要與樹脂的分子結構、親水親油平衡以及所添加的助劑等因素有關。攪拌速度和時間通常不會直接改變這些內在因素,因此對凍融穩定性的影響較小。例如,在一些水性醇酸樹脂的制備中,即使攪拌速度和時間有所變化,但只要樹脂的配方和合成工藝相對穩定,其凍融穩定性一般不會受到***影響7。熱儲存穩定性:熱儲存穩定性主要取決于樹脂的化學組成、分子量分布以及是否存在易分解或易反應的基團等。雖然攪拌速度和時間會影響反應的均勻性和程度,但在正常的生產工藝范圍內,對于已經合成好的醇酸樹脂,其熱儲存穩定性受攪拌速度和時間的影響相對較小...
攪拌器的攪拌速度和時間對環氧樹脂的性能有哪些影響?攪拌器的攪拌速度和時間對環氧樹脂的性能有***影響,具體如下:攪拌速度的影響:混合均勻性:攪拌速度適中時,能使環氧樹脂與固化劑等成分形成良好的對流和湍流,各成分充分接觸和混合,實現均勻混合。若速度過慢,物料混合不充分,局部濃度差異大,會導致固化不完全或固化不均勻。速度過快,可能會使物料在攪拌器周圍形成渦流,部分環氧樹脂被過度攪拌,而容器邊緣或角落的則混合不充分,同樣影響混合效果。氣泡引入:攪拌速度過高容易引入大量空氣,形成氣泡。這些氣泡在后續固化過程中若未完全去除,會影響環氧樹脂固化后的性能,如降低強度、增加脆性等,還會影響產品的外...
精細化工中滴加工藝作用有哪些? 在化工生產中,滴加工藝是一種通過將一種或多種物料(通常為液體、熔融態或低黏度懸浮液)以“滴加”形式緩慢、均勻地加入到反應體系中的單元操作,其中心是通過控制物料加入的速率和分布,實現反應過程的可控性,避免局部過度反應、劇烈放熱或副產物生成。一、滴加工藝的中心目的滴加工藝的設計圍繞“控制反應節奏”展開,具體目標包括:抑制劇烈放熱:對于強放熱反應(如中和、氧化、硝化、聚合等),若物料一次性加入,會導致局部溫度驟升,可能引發沖料、分解甚至危險;滴加可通過分散物料降低單位時間放熱量,配合溫控系統實現溫和反應。避免局部濃度過高:當反應物之一過量會引發副反應(如A與...
剪切力與槳葉形態的關聯規律有哪些?剪切力與槳葉形態的中心關聯規律,本質是槳葉形態通過改變流體的速度梯度分布、湍流強度及流動方向,直接影響剪切力的大小、分布均勻性和局部強度。具體規律可從以下維度總結:1.槳葉形狀決定流場特性,進而影響剪切力類型不同形狀的槳葉會引導流體形成不同的主流方向(徑向、軸向、周向),而剪切力主要源于流體在主流方向上的速度梯度差異:徑向流主導的槳葉(如渦輪槳、圓盤渦輪槳):葉片設計為垂直或大角度傾斜(如90°或45°),旋轉時推動流體沿徑向高速流動,在槳葉邊緣與釜壁/其他區域的流體形成強烈速度差,產生高剪切力(尤其在槳葉附近)。這類槳葉是高剪切場景的中心(如乳化...
攪拌速度對環氧大豆油的儲存穩定性有何影響?攪拌速度主要通過影響環氧大豆油的反應程度和產品質量來影響其儲存穩定性,具體如下:反應程度方面速度過快:可能使反應過于劇烈,導致副反應增加,如大豆油中的雙鍵過度反應,或已生成的環氧基團發生開環等副反應,降低產品的環氧值。環氧值降低會使環氧大豆油在儲存過程中更容易受到外界因素(如熱、氧等)的影響,從而降低儲存穩定性。速度過慢:物料混合不充分,局部濃度差異大,會使反應釜內不同部位反應進程不同,導致反應不完全,產品環氧值難以達到預期指標。環氧值不足會影響其在儲存期間的性能表現,降低對聚氯乙烯等材料的改性效果,進而影響儲存穩定性。產品質量方面速度過快...
釜內擋板對于源奧網狀消泡槳效果有何提升作用?一、打破“液面打旋”,解決網狀消泡槳的“覆蓋死角”網狀消泡槳的中心痛點之一是:無擋板時,攪拌軸旋轉會帶動液體形成“中心漩渦(打旋流)”——泡沫會被離心力甩向釜壁,堆積在邊緣區域,而網狀消泡槳(通常安裝在軸中心液面附近)只能處理中心泡沫,形成“邊緣泡沫堆積、中心消泡過?!钡乃澜?。釜內擋板(通常設4塊,寬度為釜徑1/12-1/10)的關鍵作用是切斷打旋流的圓周運動:擋板插入液體后,會對圓周流產生“阻擋力”,強制將打旋流轉化為“軸向+徑向的復合流場”;被甩向釜壁的泡沫,會在擋板的“導向作用”下,沿釜壁向向下方流動動,再被底層軸流槳(若搭配)向上...
攪拌器高壓與真空環境下密封結構的設計差異有哪些?攪拌器密封結構的設計關鍵,取決于環境壓力差的方向與密封優先級,高壓與真空環境的本質壓力特性差異,直接決定了二者在設計要求上的明顯不同。從密封目標看,高壓環境中攪拌器內部壓力遠高于外部,密封關鍵是“防介質外泄”,需抵御高壓介質對密封面的沖擊與滲透,避免物料損失或安全風險;真空環境則相反,內部處于低氣壓狀態,外部常壓空氣易滲入,密封關鍵是“防外界侵入”,需阻斷空氣、水汽或雜質進入,防止破壞真空度或污染物料。在結構選型上,高壓環境常用“抗擠壓型密封”,如單端面/雙端面機械密封,通過增強密封面比壓(如加大彈簧力)、優化靜環與動環的貼合精度,配...
攪拌速度如何影響DOTP產品的粘度?攪拌速度主要通過以下幾個方面影響DOTP產品的粘度:影響分子間相互作用:適當的攪拌速度可以使DOTP分子在體系中更均勻地分布,減少分子間的局部聚集,降低分子間的相互作用力,從而使粘度降低。若攪拌速度過慢,分子容易發生團聚,分子間的距離相對較近,相互作用力增強,導致粘度升高。而攪拌速度過快,可能會使分子鏈受到過度的剪切作用,分子鏈間的纏結被破壞,分子間的相互作用力減弱,粘度也會降低,但這種過度剪切可能會對產品的分子結構和性能產生不利影響。影響反應進程和產物結構:攪拌速度會影響DOTP生產過程中的反應速率和轉化率。合適的攪拌速度可以使反應物充分混合,...
攪拌器高壓與真空環境下密封結構的設計差異有哪些?攪拌器密封結構的設計關鍵,取決于環境壓力差的方向與密封優先級,高壓與真空環境的本質壓力特性差異,直接決定了二者在設計要求上的明顯不同。從密封目標看,高壓環境中攪拌器內部壓力遠高于外部,密封關鍵是“防介質外泄”,需抵御高壓介質對密封面的沖擊與滲透,避免物料損失或安全風險;真空環境則相反,內部處于低氣壓狀態,外部常壓空氣易滲入,密封關鍵是“防外界侵入”,需阻斷空氣、水汽或雜質進入,防止破壞真空度或污染物料。在結構選型上,高壓環境常用“抗擠壓型密封”,如單端面/雙端面機械密封,通過增強密封面比壓(如加大彈簧力)、優化靜環與動環的貼合精度,配...
攪拌槳葉形狀和能耗大小有什么關聯?一、葉片角度:影響流體阻力大小葉片與旋轉平面的夾角是能耗的關鍵影響因素。直葉槳(葉片垂直旋轉平面)旋轉時,主要推動物料產生徑向流,流體沖擊槳葉與罐壁的阻力較大,相同攪拌效果下能耗更高,如直葉渦輪槳在低黏度固液混合中,能耗比斜葉槳高15%-20%;斜葉槳(30°-45°傾斜)兼具徑向與軸向流,流體流動更順暢,阻力減小,能耗明顯降低,適配需長時間運行的大規?;旌蠄鼍?。二、槳葉寬徑比:關聯轉速與能量需求槳葉寬度與直徑的比值(寬徑比)直接影響轉速選擇。寬徑比大的槳葉(如寬葉推進槳),推動物料的接觸面積大,低轉速即可實現均勻混合,能耗較低;寬徑比小的窄葉槳(...
化工生產中固液混合或是液液混合對攪拌設計要求有哪些區別?混合目標與中心需求不同固液混合:中心目標是實現固體顆粒的懸浮、分散、溶解或防止沉降,需確保固體顆粒均勻分布在液體中,或與液體充分接觸(如反應、溶解)。液液混合:根據液體是否互溶,目標分為兩種:互溶液體:實現整體均勻混合(如調配濃度);不互溶液體:實現分散/乳化(如將一種液體破碎為微小液滴分散在另一種液體中)或傳質強化(如萃取過程中增大相界面面積)。2.攪拌器類型與結構設計不同固液混合:需優先強化軸向循環能力(推動液體上下方流動),避免固體顆粒在容器底部堆積。常用攪拌器類型:推進式槳(軸向流強,適合低粘度液體中低濃度固體懸浮);...
槳葉傾斜角度的調整會影響攪拌器的能耗,具體分析如下:角度對流體阻力的影響:傾斜角度變化會改變槳葉與流體的作用方式和接觸面積。較小傾斜角度時,槳葉推動流體主要產生軸向流動,流體相對平緩地流過槳葉,受到的阻力較小。隨著傾斜角度增大,流體的徑向流動增強,槳葉對流體的推動和剪切作用更加復雜,流體與槳葉的摩擦和碰撞加劇,導致阻力增大,從而需要消耗更多能量來維持攪拌器運轉。例如,當葉片角度從17°增加到90°時,攪拌器周圍的流速范圍增大,能耗也隨之變化1。角度對流動模式和湍流強度的影響2:不同的傾斜角度會產生不同的流動模式和湍流強度。較小傾斜角度產生的軸向流動,使流體在容器內形成相對簡單的循環...
攪拌槳葉形狀和能耗大小有什么關聯?一、葉片角度:影響流體阻力大小葉片與旋轉平面的夾角是能耗的關鍵影響因素。直葉槳(葉片垂直旋轉平面)旋轉時,主要推動物料產生徑向流,流體沖擊槳葉與罐壁的阻力較大,相同攪拌效果下能耗更高,如直葉渦輪槳在低黏度固液混合中,能耗比斜葉槳高15%-20%;斜葉槳(30°-45°傾斜)兼具徑向與軸向流,流體流動更順暢,阻力減小,能耗明顯降低,適配需長時間運行的大規模混合場景。二、槳葉寬徑比:關聯轉速與能量需求槳葉寬度與直徑的比值(寬徑比)直接影響轉速選擇。寬徑比大的槳葉(如寬葉推進槳),推動物料的接觸面積大,低轉速即可實現均勻混合,能耗較低;寬徑比小的窄葉槳(...
攪拌速度和時間對醇酸樹脂的以下性能影響相對較?。簝鋈诜€定性:醇酸樹脂的凍融穩定性主要與樹脂的分子結構、親水親油平衡以及所添加的助劑等因素有關。攪拌速度和時間通常不會直接改變這些內在因素,因此對凍融穩定性的影響較小。例如,在一些水性醇酸樹脂的制備中,即使攪拌速度和時間有所變化,但只要樹脂的配方和合成工藝相對穩定,其凍融穩定性一般不會受到***影響7。熱儲存穩定性:熱儲存穩定性主要取決于樹脂的化學組成、分子量分布以及是否存在易分解或易反應的基團等。雖然攪拌速度和時間會影響反應的均勻性和程度,但在正常的生產工藝范圍內,對于已經合成好的醇酸樹脂,其熱儲存穩定性受攪拌速度和時間的影響相對較小...