得指出的是,EUV光刻技術的研發始于20世紀80年代。**早希望在半周期為70nm的節點(對應邏輯器件130nm節點)就能用上EUV光刻機 [1]。可是,這一技術一直達不到晶圓廠量產光刻所需要的技術指標和產能要求。一拖再拖,直到2016年,EUV光刻機仍然沒能投入量產。晶圓廠不得不使用193nm浸沒式光刻機,依靠雙重光刻的辦法來實現32nm存儲器件、20nm和14nm邏輯器件的生產。不斷延誤,對EUV技術來說,有利也有弊。一方面,它可以獲得更多的時間來解決技術問題,提高性能參數;另一方面,下一個技術節點會對EUV提出更高的要求。下一代技術如納米壓印和定向自組裝正在研發中 [6]。昆山本地光刻系...
顯影中的常見問題:a、顯影不完全(Incomplete Development)。表面還殘留有光刻膠。顯影液不足造成;b、顯影不夠(Under Development)。顯影的側壁不垂直,由顯影時間不足造成;c、過度顯影(Over Development)。靠近表面的光刻膠被顯影液過度溶解,形成臺階。顯影時間太長。硬烘方法:熱板,100~130C(略高于玻璃化溫度Tg),1~2分鐘。目的:a、完全蒸發掉光刻膠里面的溶劑(以免在污染后續的離子注入環境,例如DNQ酚醛樹脂光刻膠中的氮會引起光刻膠局部爆裂);激發化學增強光刻膠的PAG產生的酸與光刻膠上的保護基團發生反應并移除基團使之能溶解于顯影液。...
制造掩模版,比較靈活。但由于其曝光效率低,主要用于實驗室小樣品納米制造。而電子束曝光要適應大批量生產,如何進一步提高曝光速度是個難題。為了解決電子束光刻的效率問題,通常將其與其他光刻技術配合使用。例如為解決曝光效率問題,通常采用電子束光刻與光學光刻進行匹配與混合光刻的辦法,即大部分曝光工藝仍然采用現有十分成熟的半導體光學光刻工藝制備,只有納米尺度的圖形或者工藝層由電子束光刻實現。在傳統光學光刻技術逼近工藝極限的情況下,電子束光刻技術將有可能出現在與目前193i為**的光學曝光技術及EUV技術相匹配的混合光刻中,在實現10nm級光刻中起重要的作用。b、除去水蒸氣,使基底表面由親水性變為憎水性,增...
光刻技術是現代集成電路設計上一個比較大的瓶頸。現cpu使用的45nm、32nm工藝都是由193nm液浸式光刻系統來實現的,但是因受到波長的影響還在這個技術上有所突破是十分困難的,但是如采用EUV光刻技術就會很好的解決此問題,很可能會使該領域帶來一次飛躍。但是涉及到生產成本問題,由于193納米光刻是當前能力**強且**成熟的技術,能夠滿足精確度和成本要求,所以其工藝的延伸性非常強,很難被取代。因而在2011年國際固態電路會議(ISSCC2011)上也提到,在光刻技術方面,22/20nm節點主要幾家芯片廠商也將繼續使用基于193nm液浸式光刻系統的雙重成像(doublepatterning)技術。...
得指出的是,EUV光刻技術的研發始于20世紀80年代。**早希望在半周期為70nm的節點(對應邏輯器件130nm節點)就能用上EUV光刻機 [1]。可是,這一技術一直達不到晶圓廠量產光刻所需要的技術指標和產能要求。一拖再拖,直到2016年,EUV光刻機仍然沒能投入量產。晶圓廠不得不使用193nm浸沒式光刻機,依靠雙重光刻的辦法來實現32nm存儲器件、20nm和14nm邏輯器件的生產。不斷延誤,對EUV技術來說,有利也有弊。一方面,它可以獲得更多的時間來解決技術問題,提高性能參數;另一方面,下一個技術節點會對EUV提出更高的要求。光刻系統按光源類型分為紫外(UV)、深紫外(DUV)、極紫外(EU...
英特爾高級研究員兼技術和制造部先進光刻技術總監YanBorodovsky在去年說過“針對未來的IC設計,我認為正確的方向是具有互補性的光刻技術。193納米光刻是當前能力**強且**成熟的技術,能夠滿足精確度和成本要求,但缺點是分辨率低。利用一種新技術作為193納米光刻的補充,可能是在成本、性能以及精確度方面的比較好解決方案。補充技術可以是EUV或電子束光刻。” [3]現階段很多公司也在推動納米壓印、無掩膜光刻或一種被稱為自組裝的新興技術。但是EUV光刻仍然被認為是下一代CPU的比較好工藝。光刻膠涂覆后,在硅片邊緣的正反兩面都會有光刻膠的堆積。徐州購買光刻系統規格尺寸1.氣相成底模2.旋轉烘膠3...
2019年荷蘭阿斯麥公司推出新一代極紫外光刻系統,**了當今**的第五代光刻系統,可望將摩爾定律物理極限推向新的高度 [5]。中國工程院《Engineering》期刊于2021年組建跨學科評選委員會,通過全球**提名、公眾問卷等多階段評審,選定近五年內完成且具有全球影響力的**工程成就。極紫外光刻系統憑借三大**指標入選:原創性突破:開發新型等離子體光源與反射式光學系統系統創新:整合超精密機械、真空環境控制與實時檢測技術產業效益:支撐全球90%以上**芯片制造需求 [1] [3-4] [7]。目的:a、除去表面的污染物(顆粒、有機物、工藝殘余、可動離子);吳江區直銷光刻系統規格尺寸b、堅膜,以...
準分子光刻技術作為當前主流的光刻技術,主要包括:特征尺寸為0.1μm的248 nm KrF準分子激光技術;特征尺寸為90 nm的193 nm ArF準分子激光技術;特征尺寸為65 nm的193 nm ArF浸沒式技術(Immersion,193i)。其中193 nm浸沒式光刻技術是所有光刻技術中**為長壽且**富有競爭力的,也是目前如何進一步發揮其潛力的研究熱點。傳統光刻技術光刻膠與曝光鏡頭之間的介質是空氣,而浸沒 式技術則是將空氣 換成液體介質。實際上,由于液體介質的折射率相比空氣介質更接近曝光透鏡鏡片材料的折射率,等效地加大了透鏡口徑尺寸與數值孔徑(NA),同時可以 ***提高焦深(DOF...
邊緣光刻膠的去除光刻膠涂覆后,在硅片邊緣的正反兩面都會有光刻膠的堆積。邊緣的光刻膠一般涂布不均勻,不能得到很好的圖形,而且容易發生剝離(Peeling)而影響其它部分的圖形。所以需要去除。方法:a、化學的方法(Chemical EBR)。軟烘后,用PGMEA或EGMEA去邊溶劑,噴出少量在正反面邊緣處,并小心控制不要到達光刻膠有效區域;b、光學方法(Optical EBR)。即硅片邊緣曝光(WEE,Wafer Edge Exposure)。在完成圖形的曝光后,用激光曝光硅片邊緣,然后在顯影或特殊溶劑中溶解方法:濕法清洗+去離子水沖洗+脫水烘焙(熱板150~250C,1~2分鐘,氮氣保護)。常熟...
光刻系統SUSS是一種應用于半導體制造領域的工藝試驗儀器,其比較大基片尺寸為6英寸,可實現0.5μm的分辨率和1μm的**小線寬 [1]。該系統通過精密光學曝光技術完成微電子器件的圖形轉移,為集成電路研發和生產提供關鍵工藝支持。比較大基片處理能力:支持直徑6英寸的基片加工(截至2021年1月) [1]圖形分辨率:系統的光學成像系統可實現0.5μm的分辨率 [1]線寬控制:在標準工藝條件下能夠穩定實現1μm的**小線寬加工 [1]該系統采用接觸式/接近式曝光原理,通過紫外光源實現掩模圖形向基片光刻膠的精確轉移。其精密對準機構可保證多次曝光時的套刻精度,適用于半導體器件研發階段的工藝驗證和小批量試...
EUV光刻采用波長為10-14納米的極紫外光作為光源,可使曝光波長一下子降到13.5nm,它能夠把光刻技術擴展到32nm以下的特征尺寸。根據瑞利公式(分辨率=k1·λ/NA),這么短的波長可以提供極高的光刻分辨率。換個角度講,使用193i與EUV光刻機曝同一個圖形,EUV的工藝的k1因子要比193i大。k1越大對應的光刻工藝就越容易;k1的極限是0.25,小于0.25的光刻工藝是不可能的。從32nm半周期節點開始(對應20nm邏輯節點),即使使用1.35NA的193nm浸沒式光刻機,k1因子也小于0.25。一次曝光無法分辨32nm半周期的圖形,必須使用雙重光刻技術。使用0.32NA的EUV光刻...
主要流程光復印工藝的主要流程如圖2:曝光方式常用的曝光方式分類如下:接觸式曝光和非接觸式曝光的區別,在于曝光時掩模與晶片間相對關系是貼緊還是分開。接觸式曝光具有分辨率高、復印面積大、復印精度好、曝光設備簡單、操作方便和生產效率高等特點。但容易損傷和沾污掩模版和晶片上的感光膠涂層,影響成品率和掩模版壽命,對準精度的提高也受到較多的限制。一般認為,接觸式曝光只適于分立元件和中、小規模集成電路的生產。非接觸式曝光主要指投影曝光。在投影曝光系統中,掩膜圖形經光學系統成像在感光層上,掩模與晶片上的感光膠層不接觸,不會引起損傷和沾污,成品率較高,對準精度也高,能滿足高集成度器件和電路生產的要求。但投影曝光...
其主要成像原理是光波波長為10~14nm的極端遠紫外光波經過周期性多層膜反射鏡投射到反射式掩模版上,通過反射式掩模版反射出的極紫外光波再通過由多面反射鏡組成的縮小投影系統,將反射式掩模版上的集成電路幾何圖形投影成像到硅片表面的光刻膠中,形成集成電路制造所需要的光刻圖形。目 前EUV技 術 采 用 的 曝 光 波 長 為13.5nm,由于其具有如此短的波長,所有光刻中不需要再使用光學鄰近效應校正(OPC)技術,因而它可以把光刻技術擴展到32nm以下技術節點。2009年9月Intel*** 次 向 世 人 展 示 了22 nm工藝晶圓,稱繼續使用193nm浸沒式光刻技術,并規 劃 與EUV及EBL...
對準對準方法:a、預對準,通過硅片上的notch或者flat進行激光自動對準;b、通過對準標志(Align Mark),位于切割槽(Scribe Line)上。另外層間對準,即套刻精度(Overlay),保證圖形與硅片上已經存在的圖形之間的對準。曝光曝光中**重要的兩個參數是:曝光能量(Energy)和焦距(Focus)。如果能量和焦距調整不好,就不能得到要求的分辨率和大小的圖形。表現為圖形的關鍵尺寸超出要求的范圍。曝光方法:a、接觸式曝光(Contact Printing)。掩膜板直接與光刻膠層接觸。曝光出來的圖形與掩膜板上的圖形分辨率相當,設備簡單。缺點:光刻膠污染掩膜板;掩膜板的磨損,壽...
光刻系統是一種用于半導體器件制造的精密科學儀器,是制備高性能光電子和微電子器件不可或缺的**工藝設備 [1] [6-7]。其技術發展歷經紫外(UV)、深紫外(DUV)到極紫外(EUV)階段,推動集成電路制程不斷進步 [3] [6]。當前**的EUV光刻系統已實現2nm制程芯片量產(截至2024年12月) [6],廣泛應用于微納器件加工、芯片制造等領域 [2] [5]。全球**光刻系統主要由ASML、Nikon等企業主導,國內廠商如上海微電子在中端設備領域取得突破 [7]。光刻系統按光源類型分為紫外(UV)、深紫外(DUV)、極紫外(EUV)、電子束及無掩模激光直寫等類別 [2] [5-7]。工...
半導體器件和集成電路對光刻曝光技術提出了越來越高的要求,在單位面積上要求完善傳遞圖像的信息量已接近常規光學的極限。光刻曝光的常用波長是3650~4358 埃,預計實用分辨率約為1微米。幾何光學的原理,允許將波長向下延伸至約2000埃的遠紫外波長,此時可達到的實用分辨率約為0.5~0.7微米。微米級圖形的光復印技術除要求先進的曝光系統外,對抗蝕劑的特性、成膜技術、顯影技術、超凈環境控制技術、刻蝕技術、硅片平整度、變形控制技術等也有極高的要求。因此,工藝過程的自動化和數學模型化是兩個重要的研究方向。光刻膠涂覆后,在硅片邊緣的正反兩面都會有光刻膠的堆積。江蘇供應光刻系統量大從優EUV光刻系統的發展歷...
介紹04:54新型DUV光刻機公布,套刻精度達8納米!與全球前列設備差多少?直接分步重復曝光系統 (DSW) 超大規模集成電路需要有高分辨率、高套刻精度和大直徑晶片加工。直接分步重復曝光系統是為適應這些相互制約的要求而發展起來的光學曝光系統。主要技術特點是:①采用像面分割原理,以覆蓋比較大芯片面積的單次曝光區作為**小成像單元,從而為獲得高分辨率的光學系統創造條件。②采用精密的定位控制技術和自動對準技術進行重復曝光,以組合方式實現大面積圖像傳遞,從而滿足晶片直徑不斷增大的實際要求。當前先進的EUV光刻系統已實現2nm制程芯片量,應用于微納器件加工、芯片制造等領域。南通銷售光刻系統批量定制1....
目 前EUV技 術 采 用 的 曝 光 波 長 為13.5nm,由于其具有如此短的波長,所有光刻中不需要再使用光學鄰近效應校正(OPC)技術,因而它可以把光刻技術擴展到32nm以下技術節點。2009年9月Intel*** 次 向 世 人 展 示 了22 nm工藝晶圓,稱繼續使用193nm浸沒式光刻技術,并規 劃 與EUV及EBL曝 光 技 術 相 配 合,使193nm浸沒式光刻技術延伸到15和11nm工藝節點。 [1]電子束光刻技術是利用電子槍所產生的電子束,通過電子光柱的各極電磁透鏡聚焦、對中、各種象差的校正、電子束斑調整、電子束流調整、電子束曝光對準標記檢測、電子束偏轉校正、電子掃描場畸變...
顯影中的常見問題:a、顯影不完全(Incomplete Development)。表面還殘留有光刻膠。顯影液不足造成;b、顯影不夠(Under Development)。顯影的側壁不垂直,由顯影時間不足造成;c、過度顯影(Over Development)。靠近表面的光刻膠被顯影液過度溶解,形成臺階。顯影時間太長。硬烘方法:熱板,100~130C(略高于玻璃化溫度Tg),1~2分鐘。目的:a、完全蒸發掉光刻膠里面的溶劑(以免在污染后續的離子注入環境,例如DNQ酚醛樹脂光刻膠中的氮會引起光刻膠局部爆裂);下一代技術如納米壓印和定向自組裝正在研發中 [6]。南通本地光刻系統批量定制準分子光刻技術作...
為把193i技術進一步推進到32和22nm的技術節點上,光刻**一直在尋找新的技術,在沒有更好的新光刻技術出現前,兩次曝光技術(或者叫兩次成型技術,DPT)成為人們關 注 的 熱 點。ArF浸沒式兩次曝光技術已被業界認為是32nm節點相當有競爭力的技術;在更低的22nm節點甚至16nm節點技術中,浸沒式 光刻技術也 具 有相當大 的優勢。01:23新哥聊芯片:13.光刻機的數值孔徑浸沒式光刻技術所面臨的挑戰主要有:如何解決曝光中產生的氣泡和污染等缺陷的問題;研發和水具有良好的兼容性且折射率大于1.8的光刻膠的問題;研發折射率較大的光學鏡頭材料和浸沒液體材料;以 及 有 效 數 值 孔 徑NA值...
集成電路制造中利用光學- 化學反應原理和化學、物理刻蝕方法,將電路圖形傳遞到單晶表面或介質層上,形成有效圖形窗口或功能圖形的工藝技術。隨著半導體技術的發展,光刻技術傳遞圖形的尺寸限度縮小了2~3個數量級(從毫米級到亞微米級),已從常規光學技術發展到應用電子束、 X射線、微離子束、激光等新技術;使用波長已從4000埃擴展到 0.1埃數量級范圍。光刻技術成為一種精密的微細加工技術。光刻技術是指在光照作用下,借助光致抗蝕劑(又名光刻膠)將掩膜版上的圖形轉移到基片上的技術。其主要過程為:首先紫外光通過掩膜版照射到附有一層光刻膠薄膜的基片表面,引起曝光區域的光刻膠發生化學反應;再通過顯影技術溶解去除曝光...
得指出的是,EUV光刻技術的研發始于20世紀80年代。**早希望在半周期為70nm的節點(對應邏輯器件130nm節點)就能用上EUV光刻機 [1]。可是,這一技術一直達不到晶圓廠量產光刻所需要的技術指標和產能要求。一拖再拖,直到2016年,EUV光刻機仍然沒能投入量產。晶圓廠不得不使用193nm浸沒式光刻機,依靠雙重光刻的辦法來實現32nm存儲器件、20nm和14nm邏輯器件的生產。不斷延誤,對EUV技術來說,有利也有弊。一方面,它可以獲得更多的時間來解決技術問題,提高性能參數;另一方面,下一個技術節點會對EUV提出更高的要求。電子束光刻系統(如EBL 100KV)采用高穩定性電子槍和精密偏轉...
介紹04:54新型DUV光刻機公布,套刻精度達8納米!與全球前列設備差多少?直接分步重復曝光系統 (DSW) 超大規模集成電路需要有高分辨率、高套刻精度和大直徑晶片加工。直接分步重復曝光系統是為適應這些相互制約的要求而發展起來的光學曝光系統。主要技術特點是:①采用像面分割原理,以覆蓋比較大芯片面積的單次曝光區作為**小成像單元,從而為獲得高分辨率的光學系統創造條件。②采用精密的定位控制技術和自動對準技術進行重復曝光,以組合方式實現大面積圖像傳遞,從而滿足晶片直徑不斷增大的實際要求。無掩模激光直寫系統利用激光直接在基材上成像,適用于柔性電子器件制造等領域 [5]。姑蘇區銷售光刻系統工廠直銷光刻...
浸沒式光刻技術所面臨的挑戰主要有:如何解決曝光中產生的氣泡和污染等缺陷的問題;研發和水具有良好的兼容性且折射率大于1.8的光刻膠的問題;研發折射率較大的光學鏡頭材料和浸沒液體材料;以 及 有 效 數 值 孔 徑NA值 的 拓 展 等 問題。針 對 這 些 難 題 挑 戰,國 內 外 學 者 以 及ASML,Nikon和IBM等公 司已 經 做 了 相 關 研 究并提出相應的對策。浸沒式光刻機將朝著更高數值孔徑發展,以滿足更小光刻線寬的要求。 [1]提高光刻技術分辨率的傳統方法是增大鏡頭的NA或縮 短 波 長,通 常 首 先 采 用 的 方 法 是 縮 短 波長。國內上海微電子裝備股份有限公司研...
在曝光過程中,需要對不同的參數和可能缺陷進行跟蹤和控制,會用到檢測控制芯片/控片(Monitor Chip)。根據不同的檢測控制對象,可以分為以下幾種:a、顆粒控片(Particle MC):用于芯片上微小顆粒的監控,使用前其顆粒數應小于10顆;b、卡盤顆粒控片(Chuck Particle MC):測試光刻機上的卡盤平坦度的**芯片,其平坦度要求非常高;c、焦距控片(Focus MC):作為光刻機監控焦距監控;d、關鍵尺寸控片(Critical Dimension MC):用于光刻區關鍵尺寸穩定性的監控;截至2024年12月,EUV技術已應用于2nm芯片量產,但仍需優化光源和光刻膠性能。虎丘...
光刻系統SUSS是一種應用于半導體制造領域的工藝試驗儀器,其比較大基片尺寸為6英寸,可實現0.5μm的分辨率和1μm的**小線寬 [1]。該系統通過精密光學曝光技術完成微電子器件的圖形轉移,為集成電路研發和生產提供關鍵工藝支持。比較大基片處理能力:支持直徑6英寸的基片加工(截至2021年1月) [1]圖形分辨率:系統的光學成像系統可實現0.5μm的分辨率 [1]線寬控制:在標準工藝條件下能夠穩定實現1μm的**小線寬加工 [1]該系統采用接觸式/接近式曝光原理,通過紫外光源實現掩模圖形向基片光刻膠的精確轉移。其精密對準機構可保證多次曝光時的套刻精度,適用于半導體器件研發階段的工藝驗證和小批量試...
光刻機系統是材料科學領域的關鍵設備,通過光學成像原理將掩模版上的微細圖形精確轉移到光刻膠表面。系統配置1Kw近紫外光源與6V/30W顯微鏡燈適配器,配備氣動防震臺保障精密操作環境,其技術參數截至2020年11月24日仍在使用 [1]。通過光化學反應將掩模版上的圖形轉移至光刻膠上 [1]。系統采用光敏材料與精確曝光技術結合的方式完成圖形復制。(截至2020年11月24日更新數據)1.光源系統輸出功率:1千瓦級近紫外光(NUV)配套適配器:6V直流供電,額定功率30W2.穩定裝置光刻系統按光源類型分為紫外(UV)、深紫外(DUV)、極紫外(EUV)、電子束及無掩模激光直寫等類別。吳江區銷售光刻系統...
e、光刻膠厚度控片(PhotoResist Thickness MC):光刻膠厚度測量;f、光刻缺陷控片(PDM,Photo Defect Monitor):光刻膠缺陷監控。舉例:0.18μm的CMOS掃描步進光刻工藝。光源:KrF氟化氪DUV光源(248nm);數值孔徑NA:0.6~0.7;焦深DOF:0.7μm;分辨率Resolution:0.18~0.25μm(一般采用了偏軸照明OAI_Off-Axis Illumination和相移掩膜板技術PSM_Phase Shift Mask增強);套刻精度Overlay:65nm;產能Throughput:30~60wafers/hour(20...
由于193nm沉浸式工藝的延伸性非常強,同時EUV技術耗資巨大進展緩慢。EUV(極紫外線光刻技術)是下一代光刻技術(<32nm節點的光刻技術)。它是采用波長為13.4nm的軟x射線進行光刻的技術。EUV光刻的基本設備方面仍需開展大量開發工作以達到適于量產的成熟水平。當前存在以下挑戰:(1)開發功率足夠高的光源并使系統具有足夠的透射率,以實現并保持高吞吐量。(2)掩模技術的成熟,包括以足夠的平面度和良率制**射掩模襯底,反射掩模的光化學檢測,以及因缺少掩模表面的保護膜而難以滿足無缺陷操作要求。(3)開發高靈敏度且具有低線邊緣粗糙度(LineEdgeRoughness,LER)的光刻膠。 [3]電...
極紫外光刻系統是采用13.5納米波長極紫外光源的半導體制造**設備,可將芯片制程推進至7納米、5納米及更先進節點。該系統由荷蘭阿斯麥公司于2019年推出第五代產品,突破光學衍射極限,將摩爾定律物理極限推向新高度。2021年12月14日,中國工程院***發布的"2021全球**工程成就"將其列為近五年全球工程科技重大成果,評選標準包括**技術突破、系統集成創新及產業帶動效益三項維度 [1-7]。采用13.5納米波長的極紫外光源,突破傳統深紫外光刻193納米波長限制,通過多層鍍膜反射式光學系統實現更高精度曝光。該技術使芯片制程工藝節點從10納米推進至7納米、5納米及3納米水平,相較前代技術晶體管密...