在碳納米管上負載納米粒子得到了廣泛的關注和研究,這種新型的納米結構也已經在生物醫藥、催化、傳感器的領域取得了一定的進展。相對于碳納米管,石墨烯具有相似的穩定的物理性質,但是具有更高的比表面積,因此,在石墨烯上負載納米粒子同樣有希望得到新的納米結構,并改變其物理特性而產生更為豐富的功能與應用。除與納米粒子復合外,石墨烯與其他碳基納米材料也可復合組裝形成復合材料。Liu等人通過共價連接的方法制備了石墨烯/富勒烯復合材料,發現富勒烯修飾后的石墨烯非線性光學性能得到了顯著提高。Yang等人將碳納米管與石墨烯混合制備了一種新型的超級電容器,發現當石墨烯含量為90%時比電容高達326.5F/g。同時,許多課題組也證明石墨烯/碳納米管復合材料在制備透明導電薄膜方面的優勢,他們發現石墨烯與碳納米管混合后制備的導電薄膜在性能上要優于單一組分的導電薄膜。利用氧化石墨烯制備的石墨烯導熱膜,導熱系數高。全國導電石墨烯復合材料

還原石墨烯以及改性的石墨烯已經被用在藥物載體、活細胞成像、生物分子檢測等生物領域[50]。相比于碳納米管,石墨烯基材料在生物領域的應用有著明顯的優勢。首先,它不含金屬催化劑等雜質,因此不會對細胞產生生物應激。其次,改性的石墨烯的分散不需要表面活性劑而且具有更好的水溶性。再次,石墨烯極高的比表面積能使載藥量**提高。改性石墨烯同樣也被用在一些生物器件上,檢測生物細胞以及生物分子。它能作為界面對單個細菌進行識別,也能作為無標記,可逆DNA檢測器,或是作為一種極性特定的分子晶體吸附蛋白質/DNA[123]。制備石墨烯復合材料改性氧化石墨烯還可以應用于鋰電正負極材料的復合、催化劑負載等。

目前,國內很多機械領域正向智慧化方向發展,傳感器、數據采集、發送、傳輸、接收設備成為必然,但很多自動化器件在潮濕、雨雪天氣下具有濕滯嚴重、電阻漂移、數據采集傳輸困難等缺陷。考慮將氧化石墨烯應用于機械自動化領域,可以提高數據采集、傳輸的準確性。(2)石墨烯的制備方法有多種,其中化學氣相沉積法和氧化還原法應用**為***。(3)石墨烯廣泛應用在材料化學領域中且優勢明顯:如石墨烯及其衍生物是許多合成催化劑的重要組分,廣泛應用于化學、電化學或光學反應的催化劑,或者作為用于加載金屬、氧化物、酶或其他碳納米材料的催化劑的碳質載體;此外,石墨烯也成為了電池材料、無機材料、電容器的新型制備材料。(4)目前,國內很多機械領域正向智慧化方向發展,將氧化石墨烯應用于機械自動化領域,可以**提高數據采集、傳輸的準確性。(5)石墨烯目前在油田化學領域的應用有了新進展,尤其是鉆井液降濾失劑以及納米孔隙頁巖封堵劑已經初見成效。
氧化石墨烯可以用于提高環氧樹脂、聚乙烯、聚酰胺等聚合物的導熱性能。通常而言,碳基填料可以提高聚合物的熱導率,但無法像提高導電性那么明顯,甚至低于有效介質理論。其原因可能是因為熱能傳遞主要是以晶格振動的形式,填料與聚合物之間以及填料與填料之間較弱的振動模式也會增加熱阻。液態硅橡膠(LSR)廣泛應用于電子器件的密封。然而,在一般情況下,LSR的導熱性較差使得涂層或盆栽器件散熱過量,從而導致器件損壞或壽命降低。為了緩解這一現狀,Mu等人研究了寬體積范圍內填充ZnO的硅橡膠的熱導率,并研究了形成的導電粒子鏈對熱導率的影響。同時也研究了Al2O3用量對硅橡膠導熱性能和力學性能的影響。高導電石墨烯銅復合材料又稱為超級銅。

石墨烯(graphene)是近幾年來發展起來的一種新型二維無機納米材料,自從其發現以來,石墨烯在化學、物理、材料、電子等各個領域顯示了廣闊的應用前景。尤其是它極高的機械強度,出色的導電和導熱性能,以及豐富的來源(石墨),使其能作為一種理想的無機納米填料來制備聚合物復合材料。但是目前為止,石墨烯材料的大規模制備,以及如何將石墨烯均勻地分散到聚合物基體中并且優化石墨烯與聚合物基體之間的界面作用力一直是科學界及工業界尚待解決的難題。本學位論文圍繞著這些問題,運用了多種新穎的方法實現了對石墨烯以及功能化石墨烯材料的合成,并制備了多種高性能的石墨烯/聚合物復合材料,這些材料在航空、運輸、生物醫藥等方面具有潛在的應用價值。氧化石墨烯分散液含有豐富的羥基、羧基和環氧基等含氧官能團。北京制造石墨烯復合材料生產
氧化石墨烯應用于熱管理、橡膠、塑料、樹脂、纖維等高分子復合材料領域。全國導電石墨烯復合材料
聚合物太陽能電池常采用氧化銦錫(ITO)作為透明導電電極。其中ITO成本較高,機械穩定性較差,即使在很小的外界機械應力作用下ITO膜也易產生微裂紋導致膜電阻增加,從而使光電器件的性能下降。石墨烯優異的光學性能和機械強度及韌性,使其在柔性光伏器件的透明電極中具有更好應用潛力[97]。Xu等[98]將氧化石墨烯溶液旋涂成膜,然后在700℃下用肼蒸汽還原,所得石墨烯薄膜的薄層電阻為1.79×104Ω/sq,電導率為22.3S/cm,將其在有機光伏電池中(OPVs)作為透明電極,所得器件的功率轉換效率為0.13%。這種方法制備得到的石墨烯薄膜不僅可以用于有機光伏電池,還可以用于其他光學器件,例如平板顯示器等。Zhang等[99]對氧化石墨烯進行950℃熱還原,再使用標準工業光刻以及O2等離子體蝕刻工藝對還原的石墨烯薄膜進行精確可控地刻蝕,制備了石墨烯網狀透明電極(GME),提高了電極的透光率。全國導電石墨烯復合材料