氧化石墨烯(GO)的比表面積很大,而厚度只有幾納米,具有兩親性,表面的各種官能團使其可與生物分子直接相互作用,易于化學修飾,同時具有良好的生物相容性,超薄的GO納米片很容易組裝成紙片或直接在基材上進行加工。另外,GO具有獨特的電子結構性能,可以通過熒光能量共振轉移和非輻射偶極-偶極相互作用能有效猝滅熒光體(染料分子、量子點及上轉換納米材料)的熒光。這些特點都使GO成為制作傳感器極好的基本材料[74-76]。Arben的研究中發現,將CdSe/ZnS量子點作為熒光供體,石墨、碳纖維、碳納米管和GO作為熒光受體,以上幾種碳材料對CdSe/ZnS量子點的熒光淬滅效率分別為66±17%、74±7%、71±1%和97±1%,因此與其他碳材料相比,GO具有更好的熒光猝滅效果[77]。氧化石墨可以用于提高環氧樹脂、聚乙烯、聚酰胺等聚合物的導熱性能。北京應該怎么做氧化石墨

氧化石墨烯同時具有熒光發射和熒光淬滅特性,廣義而言,其自身已經可以作為一種傳感材料,在生物、醫學領域的應用充分說明了這一點。經過功能化的氧化石墨烯/還原氧化石墨烯在更加***的領域內得到了應用,特別在光探測、光學成像、新型光源、非線性器件等光電傳感相關領域有著豐富的應用。光電探測器是石墨烯問世后**早應用的領域之一。2009年,Xia等利用機械剝離的石墨烯制備出了***個石墨烯光電探測器(MGPD)[2],如圖9.6,以1-3層石墨烯作為有源層,Ti/Pd/Au作源漏電極,Si作為背柵極并在其上沉淀300nm厚的SiO2,在電極和石墨烯的接觸面上因為功函數的不同,能帶會發生彎曲并產生內建電場。北京應該怎么做氧化石墨氧化石墨是一種碳、氧數量之比介于2.1到2.9之間黃色固體,并仍然保留石墨的層狀結構,但結構更復雜。

GO/RGO在光纖傳感領域會有越來越多的應用,其基本的原理是利用石墨烯及氧化石墨烯的淬滅特性、分子吸附特性以及對金屬納米結構的惰性保護作用等,通過吸收光纖芯層穿透的倏逝波改變光纖折射率或者基于表面等離子體共振(SPR)效應影響折射率。GO/RGO可以在光纖的側面、端面對光進行吸收或者反射,而為了增加光與GO/RGO層的相互作用,采用了不同光纖幾何彎曲形狀,如直型、U型、錐型和雙錐型等。有鉑納米顆粒修飾比沒有鉑納米顆粒修飾的氧化石墨烯薄膜光纖傳感器靈敏度高三倍,為多種氣體的檢測提供了一個理想的平臺。
GO作為新型的二維結構的納米材料,具有疏水性中間片層與親水性邊緣結構,特殊的結構決定其優異的***特性。GO的***活性主要有以下幾種機制:(1)機械破壞,包括物理穿刺或者切割;(2)氧化應激引發的細菌/膜物質破壞;(3)包覆導致的跨膜運輸阻滯和(或)細菌生長阻遏;(4)磷脂分子抽提理論。GO作用于細菌膜表面的殺菌機制中,主要是GO與起始分子反應(MolecularInitiatingEvents,MIEs)[51]的作用(圖7.3),包括GO表面活性引發的磷脂過氧化,GO片層結構對細菌膜的嵌入、包裹以及磷脂分子的提取,GO表面催化引發的活性自由基等。另外,GO的尺寸在上述不同的***機制中對***的影響也是不同的,機械破壞和磷脂分子抽提理論表明尺寸越大的GO,能表現出更好的***能力,而氧化應激理論則認為GO尺寸越小,其***效果越好。減少面內難以修復的孔洞,從而提升還原石墨烯的本征導電性。

還原氧化石墨烯(RGO)在邊緣處和面內缺陷處具有豐富的分子結合位點,使其成為一種很有希望的電化學傳感器材料。結合原位還原技術,有很多研究使用諸如噴涂、旋涂等基于溶液的技術手段,利用氧化石墨烯(GO)在不同基底上制造出具備石墨烯相關性質的器件,以期在一些場合替代CVD制備的石墨烯。結構決定性質。氧化石墨烯(GO)的能級結構由sp3雜化和sp2雜化的相對比例決定[6],調節含氧基團相對含量可以實現氧化石墨烯(GO)從絕緣體到半導體再到半金屬性質的轉換GO的摻量對于水泥復合材料的提升效果也有差異。黑龍江哪些氧化石墨
GO的生物毒性除了有濃度依賴性,還會因GO原料的不同而呈現出毒性數據的多樣性。北京應該怎么做氧化石墨
太赫茲技術可用于醫學診斷與成像、反恐安全檢查、通信雷達、射電天文等領域,將對技術創新、國民經濟發展以及**等領域產生深遠的影響。作為極具發展潛力的新技術,2004年,美國**將THz科技評為“改變未來世界的**技術”之一,而日本于2005年1月8日更是將THz技術列為“國家支柱**重點戰略目標”**,舉全國之力進行研發。傳統的寬帶THz波可以通過光整流、光電導天線、激光氣體等離子體等方法產生,窄帶THz波可以通過太赫茲激光器、光學混頻、加速電子、光參量轉換等方法產生。北京應該怎么做氧化石墨