利用石墨烯的納米效應,將石墨烯和其他材料制備成復合薄膜也是石墨烯應用到熱管理中的途徑之一。如中科院陳成猛團隊[58]制備出一種柔性的石墨烯-碳纖維復合膜散熱片,結果表明其熱導率達到977W/(m·K),其熱傳遞的效果好于銅。**科大[59]制備出三維的石墨烯-碳納米環薄膜,其熱導率可達946W/(m·K)。浙江大學高超團隊[60]報道了一種快速濕紡組裝(wet-spinningassembly)的方法制備石墨烯薄膜,其熱導率達530~810W/(m·K)。可見,將石墨烯和其他材料制備成復合薄膜,復合薄膜的氧化石墨烯分散液可與復合材料進行原位復配,從而賦予復合材料導電、導熱、增強、阻燃、抑菌等性能。江西氧化石墨烯

涂膜法是一種操作簡單、效率相對較高的制備方法,常見的涂膜法可分為噴涂法和旋涂法兩種。3〇^0山6[46]等人將00懸浮液噴涂在預熱后的51/3丨02基材上,待溶劑完全蒸發后得到石墨烯薄膜。在噴涂過程中,可通過調節噴霧持續時間和分散液濃度來精確地控制GO片的厚度及密度,進一步還原后所得到的石墨烯薄膜可作為P型半導體,并表現出良好的場效應響應。除了普遍使用的噴涂法之外,Lian[47]等人將電噴霧沉積法與卷對卷工藝相結合,經過機械壓實和2200°C高溫處理后得到***石墨烯薄膜,熱導率比較高可達1434Wnr1K-1,并且可實現大面積生產。Bao[4]等人將GO分散液沉積在強氧化劑處理過的玻璃基材表面,并使基材分別以500rpm、800rpm和1600rpm的速度旋轉30s,全國生產氧化石墨烯改性氧化石墨烯粉末經分散可以呈現單層懸浮液狀態。

智能手機、平板電腦等便攜式設備的普及為人們的生活帶來了極大的便利。但是,其中的高速處理器等電子組件會產生不良的電磁能量,這不僅會損害電子組件自身的使用壽命、干擾其他組件的功能,還會對人體健康帶來危害。石墨烯薄膜具有優異的電學性能及熱學性能,被認為是相當有發展前景的超薄電磁屏蔽材料。鄭**教授團隊[56]通過蒸發自組裝法制備了大面積GO薄膜。經過石墨化處理后,所得石墨烯薄膜具有出色的性能,其電磁屏蔽性能和面內熱導率分別可達20dB、1100WFengW等人通過疊層熱壓技術成功制備了含有石墨烯納米片(GNP)和Ni納米鏈的復合膜(HAMS)。通過將Ni納米鏈和GNP選擇性地分布在不同的層中,其比較好電導率、屏蔽效果和面內熱導率分別可以達到76.8Sm'51.4dB和8.96WH1-1K-1。
常州第六元素材料科技股份有限公司擁有石墨的深度插層和高解離率的制備技術、氧化石墨的高效純化技術、石墨烯微片的缺陷修復/比表面可控技術、全行業**的回收/循環氧化技術等自主知識產權。自主設計的生產線已成功實現了石墨烯產品低成本規模化制備,在技術、工藝、設備等方面獲多項突破,產品具有比表面積大、導電性優異、分散度好和優良復合功能等特點。目前年產1400噸的氧化石墨(烯)/100噸石墨烯粉體生產線已投產運行,該生產線擁有完全的自主知識產權,且石墨烯產品質量好、成本低,達國際**水平,具有極強的市場競爭力。氧化石墨烯長久以來被視為親水性物質,因為其在水中具有優越的分散性。

隨著科技的快速發展,熱管理系統越來越多地應用于現代工業、電子設備等多個領域,在熱能的分散、轉換與存儲過程中發揮著重要作用。其中,熱管理材料是熱管理系統的**,因此,設計和制備具有高熱導率的新型熱管理材料成為了促進科技發展的關鍵問題之一。在眾多導熱材料中,石墨烯由于具有髙達5300Wnr11C1的本征熱導率、優異.的機械性能而受到人們的***關注,被認為是新型熱管理材料的理想選擇。在之前的研究中,石墨烯片在復合材料中往往呈無規分散的狀態,體系內熱阻較大,從而導致復合材料的熱導率處于較低水平。預先構筑石墨烯三維結構能夠有效降低界面熱阻及接觸熱阻,但是距離理論值仍有較大差距。為了進一步解決存在的問題,本課題主要通過冷凍鑄造法來構筑有序排列的***石墨烯三維網絡結構,并制備相應的相變儲能材料和散熱材料高導電石墨烯銅復合材料的電導率可以達到108-118 % IACS,高于單晶銅和銀的電導率。河北新型氧化石墨烯導熱
氧化石墨烯官能團豐富,易于改性。江西氧化石墨烯
光-熱能量轉換是石墨烯相變復合材料目前應用*****的一個領域。楊鳴波教授團隊[63]通過化學氣相沉積(CVD)制備出了具有互連網絡的石墨烯泡沫(GF),用于制備復合相變材料的三維骨架。研宄發現,這種相變復合材料的熱導率比純相變材料高744%,且具有很高的光-熱轉換效率,表明其在太陽能利用和存儲中的巨大潛力。**近,他們團隊[64]通過冷凍鑄造法制備了三維石墨烯網絡,與聚乙二醇(PEG)復合后得到具有出色的形狀穩定性以及高儲能密度的石墨烯相變復合材料。在100mWcnr2的模擬太陽光下照射20分鐘,相變復合材料的溫度迅速升高,比較高可達到約70°C,而純PEG的溫度*為55.4°C,無法完成相變過程。關閉模擬光源后,相變復合材料的溫度急劇下降,當溫度到達結晶點附近時,將出現另一個平臺,**著熱能的釋放過程。實驗結果表明,與純PEG相比,石墨烯相變復合材料在光-熱能量轉換方面表現出更優異的性能,有著更好的應用前景。江西氧化石墨烯