金屬電阻應變計還可以按敏感柵的結構形狀分為下述幾類:(1)單軸應變計:單軸應變計一般是指具有一個敏感柵的應變計。這種應變計可用來測量單向應變。(2)單軸多柵應變計:把幾個單軸敏感柵粘貼在同一個基底上,可構成平行軸多柵和同軸多柵,這種應變計可方便地測量構件表面的應變梯度。(3)應變花(多軸應變計):具有兩個或兩個以上軸線相交成一定角度的敏感柵制成的應變計稱為多軸應變計,也稱為應變花。其敏感柵可由金屬絲或金屬箔制成。采用應變花可方便地測定平面應變狀態下構件上某一點處的應變。應變計是電氣測量技術中較重要的傳感器之一。佛山非粘貼式應變計工作溫度

薄膜應變計,薄膜應變計的“薄膜”不是指用機械壓延法所得到的薄膜,而是用諸如真空蒸發、濺射、等離子化學氣相淀積等薄膜技術得到的薄膜。它是通過物理方法或化學/電化學反應,以原子,分子或離子顆粒形式受控地凝結于一個固態支撐物(即基底)上所形成的薄膜固體材料。其厚度約在數十埃至數微米之間。薄膜若按其厚度可分為非連續金屬膜、半連續膜和連續膜。薄膜應變計的制造主要是成膜工藝,如濺射、蒸發、光刻、腐蝕等。其工藝環節少,工藝周期較短,成品率高,因而獲得普遍的應用。東莞振弦式表面應變計廠家夾具固定后,輕輕拆下安裝試棒,將表面應變計從夾具一端放入,到表面應變計各端面與夾具外邊沿平齊為止。

下面介紹幾種常用的電阻應變計,金屬絲式應變計的敏感柵一般是用直徑0.01~0.05毫米的銅鎳合金或鎳鉻合金的金屬絲制成。可分為絲繞式和短接式兩種。絲繞式應變計是用一根金屬絲繞制而成(見圖2-3),短接式應變計是用數根金屬絲按一定間距平行拉緊,然后按柵長大小在橫向焊以較粗的鍍銀銅線,再將銅導線相間地切割開來而成。絲繞式應變計的疲勞壽命和應變極限較高,可作為動態測試用傳感器的應變轉換元件。絲繞式應變計多用紙基底和紙蓋層,其造價低,容易安裝。但由于這種應變計敏感柵的橫向部分是圓弧形,其橫向效應較大,測量精度較差,而且其端部圓弧部分制造困難,形狀不易保證相同,使應變計性能分散,故在常溫應變測量中正逐步被其它片種代替。
電阻應變計是一種將被測件上的應變變化轉換成為一種電信號的敏感器件。它是壓阻式應變傳感器的主要組成部分之一。電阻應變片應用較多的是金屬電阻應變片和半導體應變片兩種。金屬電阻應變片又有絲狀應變片和金屬箔狀應變片兩種。通常是將應變片通過特殊的粘和劑緊密的粘合在產生力學應變基體上,當基體受力發生應力變化時,電阻應變片也一起產生形變,使應變片的阻值發生改變,從而使加在電阻上的電壓發生變化。這種應變片在受力時產生的阻值變化通常較小,一般這種應變片都組成應變電橋,并通過后續的儀表放大器進行放大,再傳輸給處理電路(通常是A/D轉換和CPU)顯示或執行機構。箔式應變計的引線應彎成弧形,然后再焊接,敏感柵是由經過獲得大變形及退火處理的康銅制成。

瀝青混凝土應變計安全監測設計,1.界面位移變形,界面位移變形是指混凝土基座與壩基之間的接觸縫變形,采用測縫計進行監測。大壩內部變形監測儀器中,測斜管和電磁式沉降環結合布置,水管式沉降儀和引張線式水平位移計結合布置。2.滲流滲壓監測設計,分別沿流線方向和垂直流線方向設置橫、縱向兩個監測斷面。橫向監測斷面儀器布置情況為,在大壩基礎沿水流向間隔布置,在混凝土基座部位適當加密,采用滲壓計進行監測;縱向滲壓監測沿灌漿廊道布置,在廊道彎折段或坡度較陡部位,采用測壓管和滲壓計結合進行監測。在壩基廊道1#集水井處排水溝內設1座量水堰,對廊道內的滲流量進行監測;利用壩腳的老拱壩,在壩體下游設置1座量水堰對壩體滲流量進行監測。埋入式振弦應變計在持續和阻尼模式下測量頻率。東莞振弦式貼片式應變計分辨率
埋入式振弦應變計外殼堅固,耐沖擊和耐腐蝕。佛山非粘貼式應變計工作溫度
振弦式應變計可測量鋼或混凝土結構的應變,測量值用于計算結構荷載或應力。應變計可通過電弧焊接端塊固定在鋼結構上,在混凝土表面,則可以通過安裝塊(包括鋼筋螺栓)安裝。埋入式應變計澆鑄在混凝土結構中,也可作為“噴漿混凝土”模型,帶有可調的張緊環。對于混凝土的高壓力,例如在深樁中,建議使用埋入式應變計進行深部應用。工作原理,張緊的鋼弦在拉動時會以其共振頻率振動,這個頻率的平方與鋼弦的應變成正比。為了利用這一原理,振弦式應變計被設計為在固定結構上的兩個端塊之間保持鋼弦的張力,一個電磁線圈組件被用來激勵鋼弦,然后將頻率信號返回給讀數單元。結構的變形會改變兩個端塊之間的距離,從而改變鋼弦的張力及其共振頻率。返回的信號轉換為微應變單位。而應變計可在距其位置1000米的范圍內進行數據讀取。應變計具有內置的熱敏電阻,可在必要時提供溫度數據以檢測熱效應。佛山非粘貼式應變計工作溫度