本文的頭一部分主要分析鏜刀的靜剛度。文中資料來源于作者對鏜刀撓曲的研究。鏜刀的撓曲取決于刀桿材料的機械性能、刀桿直徑和切削條件。切削力:作用于鏜刀上的切削力可用一個旋轉測力計進行測量。被測力包括切向力、進給力和徑向力。與其它兩個力相比,切向力的量值較大。切向力垂直作用于刀片的前刀面,并將鏜刀向下推。需要注意,切向力作用于刀片的刀尖附近,而并非作用于刀桿的中心軸線,這一點至關重要。切向力偏離中心線產生了一個力臂(從刀桿中心線到受力點的距離),從而形成一個力矩,它會引起鏜刀相對其中心線發生扭轉變形。高速鏜削能提高生產效率,但對機床動態性能要求更高。安徽切槽鏜加工供應

精度需求的差異:在機械加工領域,精度要求是選擇合適機床的關鍵因素。車床通常適用于較低精度的加工任務,例如平面、棱柱體和螺旋形零件的制造。它在汽車零部件、軸承、軸類工具以及航天、航空和模具制造等多個行業中發揮著重要作用。相比之下,鏜床的加工精度則明顯更高,能夠處理各種精密零件,如高壓油缸、柴油機缸套、飛機輪轂、聯軸器套和模具等。其出色的內孔表面質量和加工精度使其成為高精度零件制造的理想選擇。用硬質合金制成的鏜刀桿撓曲量非常小,因為其彈性模量比鋼和高密度鎢基合金高得多。制作鏜刀桿的典型硬質合金的牌號的碳化鎢含量為90%~94%,鈷含量為10%~6%,根據行業編碼規定,此類牌號屬于C-1(E=82×106~84×106psi)、C-2(E=85×106~87×106psi)或C-3(E=89×106psi)系列。揚州數控鏜加工工藝在航空發動機領域,對各類連接孔均需經過嚴格的鏜削以保證裝配精度。

鏜孔的三種方式:1)工件旋轉;2)刀具旋轉,工件作軸向進給。在鏜床的加工過程中,鏜刀由主軸帶動進行旋轉運動,同時,工作臺則推動工件進行軸向的進給運動。這種加工方式的特點在于,鏜刀的旋轉與工件的進給運動相結合,能夠高效地完成孔的加工任務。3)刀具旋轉并伴隨進給運動。在鏜孔過程中,由于鏜桿的懸伸長度不斷變化,其受力情況也隨之改變,導致變形量不斷變化。結果是在靠近主軸箱的位置,孔徑較大,而遠離主軸箱的位置,孔徑較小,從而形成了錐孔。同時,隨著鏜桿懸伸長度的增加,主軸因自重而產生的彎曲變形也會加劇,進而影響到被加工孔軸線的直線度。因此,這種方式主要適用于加工較短孔的情況。
按切削刃數量分類:單刃鏜刀:特點:只配備一個切削刃。優勢:結構簡潔,適宜粗略加工。不足:由于切削力集中于單一刃部,可能引發振動。雙刃鏜刀:特點:擁有兩個切削刃,使得切削力能夠更為均勻地分布。優勢:這樣的設計有助于提升加工的精度。不足:相較于單刃鏜刀,其制造成本會相對較高。多刃鏜刀:特點:具備三個或更多切削刃,提供更為均勻的切削力。優勢:這種設計特別適用于精細加工,能夠確保高精度的加工效果。不足:由于結構相對復雜,其制造成本相較于雙刃鏜刀會更高。鏜加工的定位基準選擇直接影響較終零件的加工精度。

難加工材料、高精度鏜孔(容差≤0.02mm)可增加精細鏜加工步驟,鏜削余量不小于0.05mm避免加工面彈性讓刀。鏜刀對刀過程中,須注意避免鏜刀工作部(刀片和刀座)與對刀塊發生沖擊,損壞刀片及刀座導向槽使鏜刀調整值發生變化影響孔徑加工精度。鏜削加工過程中注意保持冷卻充分,增加加工部位的潤滑效果以減少切削力。各加工步驟中嚴格排屑,防止切屑參與二次切削影響孔徑加工精度與表面質量。鏜削加工過程中隨時檢查刀具(刀片)磨損程度,及時更換以保證孔徑加工質量;精鏜步驟嚴禁更換刀片防止誤差12.每步驟加工后須嚴格執行過程質量控制要求,仔細檢測實際加工孔徑并做好記錄,便于分析、調整完善鏜孔加工。在新材料研發過程中,實驗室也常使用小型鏜床進行樣品測試與驗證。揚州切槽鏜加工生產廠家
環形鏜削可用于加工大直徑薄壁零件,減小變形和振動。安徽切槽鏜加工供應
表面質量:鏜削已加工表面的魚鱗狀或螺紋狀切紋,是比較常見的表面質量現象:主要因刀具的進給和轉速不匹配造成:主要因鏜削加工的剛性振動及刀具磨損。造成調整失誤:鏜削加工中由于需要操作人員調整分配層吃刀量,在調整分配進刀余量過程中因操作不當易引發加工尺寸精度偏差。測量誤差:鏜削加工中、加工后測量過程的量具使用不當、測量方式錯誤,是鏜削加工中常見的質量隱患。1、測量工具失誤;2、測量方法不正確。另外,選擇合適的刀片槽型和切削參數,也有助于切屑的控制和排出。安徽切槽鏜加工供應