智能采摘機器人可同時處理多種不同大小的果實。智能采摘機器人的設計充分考慮了果實大小的多樣性,其機械臂和末端執行器具備靈活的調節能力。機械臂的關節活動范圍較大,能夠適應不同高度和位置的果實采摘需求;末端執行器采用可變形或多模式的結構設計,如具有多個可運動的手指或可伸縮的吸盤。當遇到不同大小的果實時,機器人的視覺系統會首先識別果實的尺寸,然后控制系統根據果實大小自動調整末端執行器的形態和抓取參數。對于較小的果實,如藍莓,末端執行器的手指會精細調整間距,以抓取;對于較大的果實,如西瓜,吸盤會根據西瓜的形狀和重量調整吸力大小,確保抓取牢固。同時,機器人的分揀系統也能對采摘下來的不同大小果實進行分類處理,將它們分別放置在對應的容器或輸送帶上。這種能夠同時處理多種不同大小果實的能力,使智能采摘機器人適用于多種果園場景,提高了其通用性和實用性。熙岳智能的智能采摘機器人輕柔采摘,減少了果實損傷,提升農產品品質。北京自制智能采摘機器人性能
其采摘力度可根據果實種類和成熟度調節。智能采摘機器人的末端執行器配備了高精度壓力傳感器和智能控制系統,能夠根據果實的特性控制采摘力度。對于不同種類的果實,系統內置了對應的力度參數庫,如草莓、櫻桃等嬌嫩果實的抓取力度控制在 0.1 - 0.3 牛頓,而蘋果、梨等果實的抓取力度則為 0.5 - 0.8 牛頓。同時,針對同一果實的不同成熟度,系統也能進行精細化調節。成熟度高的果實果肉柔軟,抓取力度會相應減小;成熟度低的果實質地較硬,抓取力度則適當增加。在實際采摘過程中,壓力傳感器以每秒 100 次的頻率實時監測抓取力度,并將數據反饋給控制系統,控制系統根據反饋信息實時調整機械臂的動力輸出,確保在抓取牢固的同時,不損傷果實表皮。經測試,該系統可將采摘過程中的果實損傷率控制在 1% 以內,極大地提升了采摘果實的品質和商品價值。福建供應智能采摘機器人性能其研發的智能采摘機器人,在現代農業園區中發揮著重要作用,助力農業高效生產。

機械臂末端的吸盤裝置可高效抓取圓形果實。智能采摘機器人機械臂末端的吸盤裝置采用氣動負壓原理,由硅膠吸盤、真空發生器和壓力調節系統組成。硅膠吸盤具有良好的柔韌性和密封性,能夠緊密貼合圓形果實表面,如蘋果、柑橘、番茄等。當機械臂對準果實后,真空發生器迅速啟動,在 0.2 秒內將吸盤內的空氣抽出,形成負壓,將果實牢牢吸附。壓力調節系統實時監測吸盤內的壓力值,根據果實的大小和重量自動調整負壓強度,確保抓取穩定且不會損傷果實。對于表面不平整的果實,吸盤邊緣的波紋設計可增強密封效果。在實際作業中,吸盤裝置每小時可完成 1500 - 2000 次抓取動作,抓取成功率達 98% 以上,且對果實表皮無任何損傷,極大地提高了圓形果實的采摘效率和品質。
智能采摘機器人可在陡坡、梯田等復雜地形作業。針對復雜地形,機器人采用履帶式底盤與自適應懸架系統相結合的設計。履帶表面的防滑齒紋與梯田臺階緊密咬合,配合主動懸掛系統實時調節底盤高度和傾斜角度,確保機器人在 45° 陡坡上仍能平穩作業。在云南的咖啡種植梯田中,機器人通過激光雷達掃描地形,自動生成貼合梯田輪廓的螺旋式作業路徑,避免垂直上下帶來的安全隱患。機械臂配備的萬向節結構使其在傾斜狀態下仍能保持水平采摘,確保果實抓取穩定。同時,機器人具備防側翻預警功能,當檢測到車身傾斜超過安全閾值時,會自動啟動制動系統并發出警報。這種專為復雜地形優化的設計,使智能采摘機器人突破地形限制,將高效作業覆蓋至傳統設備難以到達的區域,助力山地果園實現機械化生產。農業企業選擇熙岳智能的智能采摘機器人,可有效提升自身競爭力和生產效益。

激光雷達系統實時掃描果園地形,自動規劃采摘路徑。激光雷達系統通過發射激光束并接收反射信號,能夠快速構建果園的三維地形模型。它以極高的頻率向周圍環境發射激光,每秒可進行數萬次測量,從而獲取果園內樹木、溝渠、障礙物等物體的精確位置和形狀信息。基于這些實時掃描得到的數據,機器人的路徑規劃算法會綜合考慮果園的地形起伏、果樹分布、采摘任務優先級等因素,自動生成一條高效、安全的采摘路徑。例如,當遇到地勢低洼的區域或密集的果樹叢時,算法會避開這些復雜地形,選擇更為平坦、開闊的路線;在多臺機器人協同作業時,還能合理分配路徑,避免相互干擾和重復作業。通過這種方式,激光雷達系統和路徑規劃算法的結合,確保了智能采摘機器人能夠在各種復雜的果園地形中高效、有序地開展采摘工作,提升作業效率。其智能采摘機器人的應用,有效緩解了農業勞動力短缺的問題。福建多功能智能采摘機器人品牌
激光雷達通過不間斷掃描,為熙岳智能的采摘機器人預先探測作業環境和障礙物信息。北京自制智能采摘機器人性能
可同時控制多臺機器人協同完成大規模采摘任務。智能采摘機器人的協同作業系統基于先進的物聯網和分布式控制技術構建。果園管理者通過控制平臺,能夠對數十臺甚至上百臺機器人進行統一調度和管理。平臺利用智能算法,根據果園地形、果樹分布、果實成熟度等信息,為每臺機器人分配的采摘區域和任務路線。在作業過程中,機器人之間通過無線通信技術實時交互信息,自動避讓彼此,避免作業。例如,當一臺機器人完成當前區域采摘任務后,會自動向平臺發送信號,平臺隨即為其分配新的任務區域,并協調周邊機器人調整路線,實現無縫銜接。在萬畝規模的蘋果種植基地,通過 50 臺智能采摘機器人協同作業,每天可完成近千畝果園的采摘工作,相比單臺機器人作業效率提升了 5 倍以上,極大地提高了大規模果園的采摘效率,滿足果實集中成熟時的高效采收需求 。北京自制智能采摘機器人性能