防水防塵設計,使其能在惡劣天氣條件下正常工作。智能采摘機器人外殼采用 IP67 級防護標準,機身接縫處均配備雙重硅膠密封圈,有效隔絕雨水、泥漿和沙塵的侵入。電路板表面涂覆納米級三防漆,能抵御潮濕環境中的水汽腐蝕,即使在暴雨或沙塵天氣下,機器人仍可保持穩定運行。在新疆吐魯番的葡萄園中,夏季高溫伴隨沙塵天氣,配備防水防塵設計的機器人通過密封的傳感器艙和防水電機,持續完成葡萄采摘任務,避免因沙塵進入機械部件導致的卡頓故障。同時,機器人散熱系統采用封閉式液冷循環設計,防止雨水進入散熱通道,確保高溫高濕環境下電子元件的正常運行,為果園全天候作業提供可靠保障。熙岳智能在智能采摘機器人的研發中,注重多技術融合,提升機器人綜合性能。山東自制智能采摘機器人優勢
內置溫濕度傳感器,可根據環境條件調整采摘策略。智能采摘機器人內置的溫濕度傳感器能夠實時監測果園內的環境溫濕度數據。不同的作物對采摘時的溫濕度條件有不同的要求,例如,高溫干燥環境下,一些果實的表皮會變得脆弱,容易在采摘過程中受損;而在高濕度環境下,果實可能會因表面水分過多而影響儲存和品質。當溫濕度傳感器檢測到環境參數發生變化時,機器人會自動將數據傳輸至控制系統,控制系統結合預先設定的作物特性和溫濕度閾值,調整采摘策略。在高溫時,機器人可能會降低采摘速度,增加抓取力度的緩沖,以避免果實因高溫下的脆弱性而受損;在高濕度環境下,可能會優先選擇通風良好的區域進行采摘,并對采摘后的果實進行快速處理和干燥。通過這種根據環境條件實時調整采摘策略的方式,智能采摘機器人能夠更好地適應不同的環境狀況,保障采摘果實的質量。廣東節能智能采摘機器人制造價格熙岳智能的智能采摘機器人與運輸系統相結合,實現采摘、搬運一體化解決方案。

自動分類功能將采摘的果實按品質進行分揀。智能采摘機器人搭載高光譜成像儀與 AI 視覺識別系統,通過分析果實的顏色、形狀、紋理以及內部糖分含量等多維數據,實現對果實品質的分級。在柑橘采摘過程中,機器人首先利用高光譜圖像檢測果實內部的糖酸比,結合表面瑕疵識別算法,將果實分為特級、一級、二級等不同等級。分揀機械臂根據分級結果,將果實準確投放至對應的收集箱或輸送帶上。系統還支持自定義分級標準,果園管理者可根據市場需求,靈活調整果實大小、糖度等篩選參數。經測試,該自動分類系統的分揀準確率達 98% 以上,相比人工分揀效率提升 60%,有效滿足不同銷售渠道對果實品質的差異化需求。
智能采摘機器人可同時處理多種不同大小的果實。智能采摘機器人的設計充分考慮了果實大小的多樣性,其機械臂和末端執行器具備靈活的調節能力。機械臂的關節活動范圍較大,能夠適應不同高度和位置的果實采摘需求;末端執行器采用可變形或多模式的結構設計,如具有多個可運動的手指或可伸縮的吸盤。當遇到不同大小的果實時,機器人的視覺系統會首先識別果實的尺寸,然后控制系統根據果實大小自動調整末端執行器的形態和抓取參數。對于較小的果實,如藍莓,末端執行器的手指會精細調整間距,以抓取;對于較大的果實,如西瓜,吸盤會根據西瓜的形狀和重量調整吸力大小,確保抓取牢固。同時,機器人的分揀系統也能對采摘下來的不同大小果實進行分類處理,將它們分別放置在對應的容器或輸送帶上。這種能夠同時處理多種不同大小果實的能力,使智能采摘機器人適用于多種果園場景,提高了其通用性和實用性。熙岳智能研發團隊不斷優化機器人算法,讓采摘機器人的決策更加智能。

智能采摘機器人能有效減少因人工疲勞導致的采摘失誤。人工長時間采摘作業易出現視覺疲勞、動作遲緩等問題,據統計,連續工作 4 小時后,人工采摘的果實損傷率會從 5% 上升至 15%。智能采摘機器人配備的高精度傳感器與穩定的機械系統,可保持 24 小時恒定的作業精度。在廣西砂糖橘采摘季,機器人通過 AI 視覺算法持續識別果實,機械臂以每分鐘 30 次的穩定頻率進行采摘,全程果實損傷率控制在 2% 以內。即使在夜間作業,機器人的紅外視覺系統依然能保持高效工作,而人工在夜間采摘時,失誤率會進一步增加。通過替代人工進行度、重復性勞動,智能采摘機器人不保障了果實品質,還降低了因果實損傷帶來的經濟損失,每畝果園可減少損耗成本 800 至 1000 元。隨著科技發展,熙岳智能將持續優化智能采摘機器人,提升其性能和適應性。廣東果蔬智能采摘機器人價格低
熙岳智能科技研發的機器人,通過視覺系統能快速鎖定可采摘的目標果實。山東自制智能采摘機器人優勢
無線充電技術讓機器人擺脫線纜束縛自由行動。智能采摘機器人采用的無線充電技術基于磁共振耦合原理,由地面充電基站與機器人內置的接收線圈組成充電系統。地面基站發射特定頻率的電磁場,機器人在靠近基站時,接收線圈通過磁共振與發射端產生能量耦合,實現電能的無線傳輸,充電效率可達 85% 以上。這種充電方式無需人工插拔線纜,機器人在電量低于設定閾值時,可自主導航至充電基站上方,自動對準充電區域完成充電。在大型果園中,機器人可沿著預設的充電站點路線移動,實現邊作業邊充電的循環模式。例如在陜西的蘋果園中,多個無線充電基站分布于果園各處,機器人在作業間隙自動前往充電,日均作業時長從原本的 8 小時延長至 12 小時,徹底擺脫了傳統有線充電對機器人行動范圍和作業連續性的限制,大幅提升了設備的使用效率和靈活性。山東自制智能采摘機器人優勢