SAM 超聲顯微鏡具備多種成像模式,其中 A 掃描與 B 掃描模式在缺陷檢測中應用方方面面,可分別獲取單點深度信息與縱向截面缺陷分布軌跡,滿足不同檢測需求。A 掃描模式是基礎成像模式,通過向樣品某一點發射聲波,接收反射信號并轉化為波形圖,波形圖的橫坐標表示時間(對應樣品深度),縱坐標表示信號強度,技術人員可通過波形圖的峰值位置判斷缺陷的深度,通過峰值強度判斷缺陷的大小與性質,適用于單點缺陷的精細定位。B 掃描模式則是在 A 掃描基礎上,將探頭沿樣品某一方向移動,連續采集多個 A 掃描信號,再將這些信號按位置排列,形成縱向截面圖像,圖像的橫坐標表示探頭移動距離,縱坐標表示樣品深度,可直觀呈現沿移動方向的缺陷分布軌跡,如芯片內部的裂紋走向、分層范圍等。兩種模式結合使用,可實現對缺陷的 “點定位 + 面分布” 各個方面分析,提升檢測的準確性與全面性。裂縫超聲顯微鏡快速定位材料中的裂縫缺陷。斷層超聲顯微鏡設備

Wafer 晶圓是半導體芯片制造的主要原材料,其表面平整度、內部電路結構完整性直接決定芯片的性能和良率。Wafer 晶圓顯微鏡整合了高倍率光學成像與超聲成像技術,實現對晶圓的各個方面檢測。在晶圓表面檢測方面,高倍率光學系統的放大倍率可達數百倍甚至上千倍,能夠清晰觀察晶圓表面的劃痕、污漬、微粒等微小缺陷,這些缺陷若不及時清理,會在后續的光刻、蝕刻等工藝中影響電路圖案的精度。在晶圓內部電路結構檢測方面,超聲成像技術發揮重要作用,通過發射高頻超聲波,可穿透晶圓表層,對內部的電路布線、摻雜區域、晶格缺陷等進行成像檢測。例如在晶圓制造的中后段工藝中,利用 Wafer 晶圓顯微鏡可檢測電路層間的連接狀態,判斷是否存在斷線、短路等問題。通過這種各個方面的檢測方式,Wafer 晶圓顯微鏡能夠幫助半導體制造商在晶圓生產的各個環節進行質量管控,及時剔除不合格晶圓,降低后續芯片制造的成本損失,提升整體生產良率。江蘇斷層超聲顯微鏡核查記錄焊縫超聲顯微鏡在橋梁建筑中發揮重要作用。

定制化服務是推高超聲顯微鏡價格的重要因素,因不同行業的檢測需求差異明顯,標準設備往往難以滿足特殊場景需求。常見的定制需求包括特殊檢測頻率(如超過 300MHz 的超高頻檢測或低于 5MHz 的穿透性檢測)、非標樣品臺(如適配超大尺寸晶圓或異形器件的夾具)及定制化軟件界面(如與客戶生產管理系統對接的數據導出功能)。每一項定制都需額外投入研發成本:特殊頻率需重新設計換能器與信號處理電路,非標樣品臺需進行機械結構建模與加工,定制軟件需開發專屬模塊并進行兼容性測試。據行業數據,中度定制化需求可使設備價格提升 20%-50%,而深度定制(如集成自動化檢測功能)的成本增幅甚至可達 100%,但能明顯提升檢測適配性與效率。
半導體超聲顯微鏡是專為半導體制造場景設計的細分設備,其適配性要求圍繞晶圓特性與制造流程展開。在晶圓尺寸適配方面,主流設備需兼容 8 英寸與 12 英寸晶圓,樣品臺需具備精細的真空吸附功能,避免晶圓在檢測過程中發生位移,同時樣品臺的移動精度需達微米級,確保能覆蓋晶圓的每一個檢測區域。檢測頻率是另一主要指標,半導體封裝中的 Die 與基板接合面、錫球等微觀結構,需 50-200MHz 的高頻聲波才能清晰成像,若頻率過低(如低于 20MHz),則無法識別微米級的空洞與脫層缺陷。此外,設備還需具備快速成像能力,單片晶圓的檢測時間需控制在 5-10 分鐘內,以匹配半導體產線的高速量產節奏,避免成為產線瓶頸。關于半導體超聲顯微鏡的晶圓適配與流程監控。

芯片超聲顯微鏡支持 A 掃描、B 掃描、C 掃描等多種成像模式切換,其中 C 掃描模式因能生成芯片表面的 2D 缺陷分布圖,成為批量芯片篩查的主要工具,大幅提升檢測效率。在芯片量產檢測中,需對大量芯片(如每批次數千片)進行快速缺陷篩查,傳統的單點檢測方式效率低下,無法滿足量產需求。C 掃描模式通過探頭在芯片表面進行二維平面掃描,將每個掃描點的反射信號強度轉化為灰度值,生成芯片表面的 2D 圖像,圖像中不同灰度值表示不同的材料特性或缺陷狀態,如空洞、分層等缺陷會呈現為高亮或低亮區域,技術人員可通過觀察 2D 圖像快速判斷芯片是否存在缺陷,以及缺陷的位置與大致范圍。該模式的檢測速度快,單片芯片(如 10mm×10mm)的檢測時間可控制在 1-2 分鐘內,且支持自動化批量檢測,可與產線自動化輸送系統對接,實現芯片的自動上料、檢測、下料與缺陷分類,滿足量產場景下的高效檢測需求。超聲顯微鏡系統集成設備、軟件于一體。C-scan超聲顯微鏡系統
B-scan超聲顯微鏡展示材料內部細節。斷層超聲顯微鏡設備
異物超聲顯微鏡的樣品固定設計對檢測準確性至關重要,需搭配專門樣品載臺,通過負壓吸附方式固定樣品,避免檢測過程中樣品移位導致異物位置偏移,影響缺陷判斷。電子元件樣品(如芯片、電容)尺寸通常較小(從幾毫米到幾十毫米),且材質多樣(如塑料、陶瓷、金屬),若采用機械夾持方式固定,可能因夾持力不均導致樣品變形,或因夾持位置遮擋檢測區域,影響檢測效果。專門樣品載臺采用負壓吸附設計,載臺表面設有細密的吸附孔,通過真空泵抽取空氣形成負壓,將樣品緊密吸附在載臺上,固定力均勻且穩定,不會對樣品造成損傷,也不會遮擋檢測區域。同時,載臺可實現 X、Y、Z 三個方向的精細移動,便于調整樣品位置,使探頭能掃描到樣品的每一個區域,確保無檢測盲區。此外,載臺表面通常采用防刮耐磨材質(如藍寶石玻璃),避免長期使用導致表面磨損,影響吸附效果與檢測精度。斷層超聲顯微鏡設備