疫苗熱原檢測單核細胞活化反應測定法
來源:
發布時間:2025-10-06
PyroSHENTEK®熱原檢測試劑盒(MAT法)已完成 25 個品種樣品的檢測驗證,覆蓋單抗類、疫苗類、基因工程類、血液制品類、生化藥品類與注射液,結果顯示其適配性范圍廣但需關注部分樣品的干擾。疫苗類(如麻腮風聯合減毒活疫苗、人用狂犬病疫苗)、基因工程類(重組人促紅素、干擾素 α-2b)、血液制品類(人血白蛋白、凝血因子 Ⅷ)與注射液(生理鹽水、琥珀酰明膠)的加標回收率均在 50%-200% 范圍內,無明顯干擾,檢測結果可靠。單抗類(如貝伐珠單抗、阿達木單抗)、中藥注射液等樣品雖存在不同程度的抑制作用,需通過提高稀釋倍數(如稀釋至 MVD 上限)、超聲處理或添加中和劑消除抑制,優化后回收率均可達標。此外,MAT 法可有效檢測非內毒素熱原,如對貝伐珠單抗注射液中添加的酵母多糖(Zymosan,200μg/mL)、脂磷壁酸(LTA,10μg/mL),回收率分別達 113%、66.8%,證明其可解決傳統鱟試劑漏檢非內毒素熱原的問題,尤其適用于高風險生物制品的熱原防控。
MAT 熱原檢測能幫助分析和解決生物制品生產中出現的低內毒素回收(LER)現象。疫苗熱原檢測單核細胞活化反應測定法
在 MAT 熱原檢測中,單核細胞系與 PBMC(外周血單個核細胞)的檢測結果穩定性差異明顯。實驗結果數據顯示,單核細胞系的標曲 R2 達 1.000,各濃度點 CV 值極低(如 ST1 為 0.92%、ST2 為 1.5%),相對偏差均在 5% 以內;而 PBMC 的標曲 R2 為 0.997,部分濃度點 CV 值超 20%(如 ST2 為 39.6%、ST6 為 45.5%),相對偏差高達 171.43%。這種差異源于兩者對熱原反應的一致性—單核細胞系能穩定釋放 IL-6,PBMC 則因供體差異導致 IL-6 釋放水平波動,直接影響熱原檢測結果的重復性,單核細胞系更適配準確的熱原定量需求。
山西抗體藥物熱原檢測單核細胞活化試驗(MAT)將熱原檢測從經驗性觀察,推進至受體-配體相互作用的分子本質。
湖州申科生物熱原檢測試劑盒(MAT 法,貨號 1502100)包含完整的檢測體系,組分按功能可分為細胞培養類、ELISA 檢測類與輔助類,且儲存條件明確。細胞培養類組分包括:2-8℃儲存的培養液(25mL×2 瓶)、96 孔細胞孵育板,-18℃儲存的培養液添加劑(1.5mL×1 管)、細菌內毒素工作標準品,以及需液氮保存的 MAT 細胞(2 支),確保細胞活性與穩定性。ELISA 檢測類組分涵蓋:2-8℃儲存的生物素偶聯抗 IL-6 抗體(200×,60μL)、鏈霉親和素 HRP 復合物(100×,140μL)、TMB 顯色液(12mL)、終止液(6mL),以及抗 IL-6 預包被酶標板(8 孔 ×12 條),無需額外制備抗體,即開即用。輔助類組分包括細菌內毒素檢查用水(8mL×1 管)、稀釋液(25mL)、濃縮緩沖液(10×,25mL×2 瓶)與封板膜,滿足從樣品稀釋到檢測終止的全流程需求。各組分儲存條件嚴格區分,避免因儲存不當導致性能下降,保障檢測結果可靠。
MAT法熱原檢測中,樣品與細胞共培養時長需嚴格控制,以保障炎癥因子分泌量穩定。說明書要求共培養 24 小時,雖未明確允差,但實驗驗證顯示,±30 分鐘的允差對結果無明顯影響 —— 細胞因子(如 IL-6)分泌具有時間依賴性,24 小時左右達到分泌平臺期,半小時差異不會導致分泌量大幅波動。若實驗室對結果穩定性要求極高(如 QC 放行檢測),建議嚴格按 24 小時操作,避免因時長差異引入誤差;若為預實驗(如樣品稀釋倍數摸索),±30 分鐘允差可接受,但需在記錄中注明實際培養時長。需注意的是,共培養時長不可超過 26 小時或短于 22 小時:過長會導致細胞活性下降(炎癥因子分泌減少),過短則未達分泌平臺期(檢測信號偏低),均可能導致熱原濃度低估。此外,培養環境需保持穩定(37℃、5% CO?),溫度波動會影響細胞代謝,間接導致共培養時長的實際效果偏離,因此需定期校準培養箱溫度,確保環境條件一致。
MAT 熱原檢測中細胞活性影響巨大,活率需達一定標準保證檢測效果。
熱原是指微量即可引發恒溫動物體溫異常升高的物質,分為內源性(如細胞因子)與外源性兩類,外源性熱原又涵蓋微生物來源(革蘭氏陰性菌脂多糖 LPS、革蘭氏陽性菌脂磷壁酸 LTA、病毒、真菌等)與非微生物來源(灰塵、橡膠降解產物等)。傳統細菌內毒素檢查法(BET)只能檢測革蘭氏陰性菌的 LPS,無法覆蓋非內毒素熱原,而單核細胞活化試驗(MAT)可彌補這一缺陷。其原理是:熱原通過活化單核細胞表面的 Toll 樣受體(TLR,如 TLR4 識別 LPS、TLR2/TLR6 識別 LTA),啟動先天免疫反應,促使細胞釋放 IL-6、TNF-α 等促炎細胞因子;隨后采用 ELISA 法檢測 IL-6 濃度,結合 LPS 標準曲線推算樣品中總熱原含量,實現對內毒素與非內毒素熱原的同步檢測,契合《中國藥典》9301 指導原則中 全場景防控熱原風險”的要求。
生物制品的高蛋白、螯合劑基質易對鱟試驗產生抑制,rCR與MAT聯合策略可消除干擾并控制熱原。化學制藥熱原檢測風險評估
進行熱原實驗時,樣品有效稀釋倍數上限應通過干擾實驗確定,既保護細胞活性又保證熱原檢測靈敏度。疫苗熱原檢測單核細胞活化反應測定法
熱原是能引發恒溫動物體溫異常升高的物質總稱,主要成分為細菌內毒素(革蘭氏陰性菌脂多糖 LPS),同時涵蓋病毒、真菌毒素、支原體等非內毒素熱原,其檢測是保障藥品與醫療器械安全性的關鍵環節。當前熱原檢測已形成 “特異性檢測 + 廣譜篩查” 互補的完整體系:以鱟試驗法(含天然 LAL 與重組 rCR/rFC 試劑)作為細菌內毒素的特異性檢測手段,憑借 fg 級靈敏度成為制藥行業常規質控方法,可通過凝膠法實現定性、動態濁度 / 顯色法完成定量;以家兔熱原試驗作為傳統廣譜篩查方法,雖操作繁瑣(需預試篩選基礎體溫穩定家兔,正式試驗觀察 3 小時體溫變化),但仍是放射性質的藥物、血液制品等高風險產品排除非內毒素熱原的補充手段;以單核細胞活化反應測定(MAT)作為新興全熱原檢測技術,利用人源單核細胞(如 THP-1 細胞)釋放 IL-6、TNF-α 等細胞因子的特性,可同時識別內毒素與非內毒素熱原,契合疫苗、基因治療產品等對風險控制的需求。三種方法協同應用,從原料入廠到成品放行構建全流程熱原防控網絡,既保證對內毒素的準確監控,又避免非內毒素熱原的遺漏風險。
疫苗熱原檢測單核細胞活化反應測定法